Struktur Aljabar Koszul pada Aljabar Lie M_(3,1) (R)⋊〖gl〗_3 (R)

Nur Hafizhah, Departemen Matematika, FMIPA, Universitas Padjadjaran, Indonesia
Edi Kurniadi, Departemen Matematika, FMIPA, Universitas Padjadjaran, Indonesia
Ema Carnia, Departemen Matematika, FMIPA, Universitas Padjadjaran, Indonesia

Abstract


Dalam penelitian ini dipelajari aljabar Lie affine aff(3) berdimensi 12 yang merupakan jumlah semi langsung dari ruang vektor matriks berukuran 3x1 dan aljabar Lie matriks berukuran 3x3 . Tujuan penelitian ini adalah untuk membuktikan eksistensi dan struktur aljabar koszul pada aljabar Lie aff(3). Aljabar Lie tersebut adalah aljabar Lie Frobenius. Oleh karena itu, terdapat suatu fungsional linear yang mengakibatkan nilai fungsional linear pada  matriks strukturnya tidak sama dengan nol. Fungsional linear yang demikian ini disebut fungsional Frobenius. Dalam penelitian ini diberikan juga bagaimana mendapatkan matriks struktur, menghitung determinannya serta memilih fungsional Frobenius yang tepat. Hasil yang diperoleh dalam penelitian ini adalah rumus eksplisit struktur aljabar koszul pada aljabar Lie affine berdimensi 12 melalui induksi pada bentuk simplektik dari fungsional Frobeniusnya. Sebagai bahan diskusi untuk penelitian selanjutnya, hasil yang diperoleh dapat dikembangkan untuk menentukan struktur aljabar koszul pada aljabar Lie affine berdimensi n(n+1).

 

Structure of Koszul Algebra in Lie Algebra M_(3,1) (R)⋊〖gl〗_3 (R)

Abstract

In this research, we study the affine Lie algebra aff(3) of 12 dimension which is the semi-direct sum of the vector space of a matrix of 3x1 and Lie algebra of a matrix of 3x3.  The research aims to prove the existence and structure of koszul algebras on the affine Lie algebra aff(3) . Since its Lie algebra is Frobenius then there exists a linear functional whose values in the matrix structure are not equal to zero.  Such a linear functional is called a Frobenius functional. Furthermore, in this study, it is also given how to obtain the structure matrix, to calculate its determinants, and to choose the right Frobenius functional. The results obtained in this study are explicit formulas for the structure of the koszul algebra on 12-dimensional Lie affine algebra through induction in the symplectic form of its Frobenius functional. As a discussion material for further research, the results obtained can be developed to determine the structure of koszul algebra in affine Lie algebra of dimension n(n+1).



Keywords


Aljabar Lie; aljabar Lie Frobenius; aljabar Koszul

Full Text:

PDF

References


Alvarez, M. A., Rodríguez-Vallarte, M. C., & Salgado, G. (2018). Contact and Frobenius solvable Lie algebras with abelian nilradical. Comm. Algebra, 46, 4344–4354.

Austin, T., Bantilan, H., Jonas, I., & Kory, P. (2007). The Pfaffian Transformation Introduction to the Pfaffian Transformation The Pfaffian of a Skew-Symmetric Matrix. ReCALL.

Muraleetharan, B., Thirulogasanthar, K., & Sabadini, I. (2017). A representation of Weyl-Heisenberg Lie algebra in the quaternionic setting. Annal.of Physics, 385, 180–213.

Burde, D. (2015). Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Central European Journal of Mathematics, 4(3), 323–357. https://doi.org/10.2478/s11533-006-0014-9

Csikόs, B., & Verhόczki, L. (2007). Classification of Frobenius Lie algebras of dimension ≤ 6. Publicationes Mathematicae-Debrecen, 70, 427–451.

Diatta, A., & Manga, B. (2014). On properties of principal elements of frobenius lie algebras. J. Lie Theory, 24(3), 849–864.

Diatta, A., Manga, B., & Mbaye, A. (2020). On systems of commuting matrices , Frobenius Lie algebras and Gerstenhaber ’ s Theorem. (February), 0–12.

Gerstenhaber, M., & Giaquinto, A. (2009). The principal element of a frobenius Lie algebra. Letters in Mathematical Physics, 88(1–3), 333–341. https://doi.org/10.1007/s11005-009-0321-8

Graaf, W. A. De. (2007). Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. 309, 640–653. https://doi.org/10.1016/j.jalgebra.2006.08.006

Hendrawan, R. (2020). Aljabar Simetrik Kiri Pada Aljabar Lie Frobenius Riil Berdimensi 6. Unpad.

Hilgert, J., & Neeb, K.-H. (2012). Structure and Geometry of Lie Groups. New York: Springer Monographs in Mathematics, Springer.

Humphreys, J. E. (1972). Introduction to Lie ALgebra and its Representation.pdf (Third Prin). New York Heidelberg Berlin: Springer-Verlag.

Humphreys, J. E. (1980). introduction to Lie Algebras and Representation Theory. Springer.

Kirillov, A. A. (2004). Lectures on the Orbit Method, Graduate Studies in Mathematics. American Mathematical Society,Providence, 64.

Kurniadi, E. (2019). Harmonic analysis for finite dimensional real Frobenius Lie algebras. Nagoya University.

Kurniadi, E., Carnia, E., & Supriatna, A. K. (2021). The Construction of Real Frobenius Lie Algebras from Non-Commutative Nilpotent Lie Algebras of Dimension ≤4. IOP Journal of Physics Conference Series, 22(1).

Kurniadi, E., & Ishi, H. (2019). Harmonic Analysis for 4- Dimensional Real Frobenius Lie Algebras. Springer Proceeding in Mathematics & Statistics. https://doi.org/https://doi.org/10.1007/978-3-319-66963-2

Li, H., & Wang, Q. (2020). Trigonometric Lie algebras, affine Lie algebras, and vertex algebras. Journal of Advance in Mathematics, 363.

McInerney, A. (2013). First Steps in Differential Geometry : Riemannian, Contact, Symplectic. New York : Springer-Verlag.

Niroomand, P., & Parvizi, M. (2017). 2-capability and 2-nilpotent multiplier of finite dimensional nilpotent Lie algebras. Journal of Geometry and Physics, 121, 180–185.

Ooms, A. I. (2009). Computing invariants and semi-invariants by means of Frobenius Lie algebras. J. Algebra, 321, 1293–1312. https://doi.org/10.1016/j.jalgebra.2008.10.026

Ooms, A. I. (1980). On frobenius lie algebras. In Communications in Algebra (Vol. 8). https://doi.org/10.1080/00927878008822445

Pham, D. N. (2016). G-Quasi-Frobenius Lie Algebras. Archivum Mathematicum, 52(4), 233–262. https://doi.org/10.5817/AM2016-4-233

Szechtman, F. (2014). Modular representations of Heisenberg algebras. Linear Algebra and Its Applications, 457, 49–60.

Xue, T. (2014). Nilpotent coadjoint orbits in small characteristic. Journal of Algebra, 397, 111–140.




DOI: https://doi.org/10.21831/pythagoras.v17i1.39713

Refbacks

  • There are currently no refbacks.


PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:


Creative Commons License Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.

All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X

Visitor Number:Statcounter

View Pythagoras Stats