Analysis of students’ thinking process in solving arithmetic sequence based on adversity quotient types

Muhamad Sabirin, Department of Mathematics Education, UIN Antasari Banjarmasin, Indonesia
Saidah Arafah, Department of Mathematics Education, UIN Antasari Banjarmasin, Indonesia
M. Amin Paris, Department of Mathematics Education, UIN Antasari Banjarmasin, Indonesia
Muh. Fajaruddin Atsnan, Department of Mathematics Education, UIN Antasari Banjarmasin, Indonesia
Maisea Ledua Nareki, Mathematics Education and Physics, Gospel High School, Fiji

Abstract


This descriptive qualitative study aimed at describing students’ thinking process in solving arithmetic sequence problems based on students’ adversity quotient (AQ). Two students who have camper type of AQ and two students who have transition from camper to climber type of AQ were involved in this study. We employed a questionnaire to identify the type of AQ that students have, a test to collect data on students’ problem-solving process, and an interview guideline to clarify students’ thinking process in problem-solving. The collected data were analyzed by following a process consisting of data reduction, data presentation, and drawing conclusions or verification. The results revealed that the students who have camper type of AQ demonstrated an assimilation thinking process on the stage of understanding problem and devising a problem-solving plan, an accommodation-assimilation thinking process on the stage of devising a problem-solving plan, and an accommodation thinking process on the stage of looking back. As for students who have transition from camper to climber type of AQ, they have similar thinking process with that of the students who have camper type of AQ on the stage of understanding problem, devising a problem-solving plan, and executing the problem-solving plan, but these students demonstrated different thinking process on the stage of looking back. In the stage of looking back, the students who have transition from camper to climber type of AQ presented an accommodation-assimilation thinking process that can be found from their responses to the test and interview.


Keywords


adversity quotient; accommodation; arithmetic sequence; assimilation; mathematics problem solving; thinking process

Full Text:

DOWNLOAD PDF

References


Afifuddin, A., & Saebani, B. A. (2009). Metode penelitian kualitatif [Qualitative research method]. Pustaka Setia.

Bakry, B., & Bin Bakar, M. N. (2015). The process of thinking among junior high school students in solving HOTS question. International Journal of Evaluation and Research in Education, 4(3), 138–145. http://doi.org/10.11591/ijere.v4i3.4504

Bicer, A., Capraro, R. M., & Capraro, M. M. (2013). Integrating writing into mathematics classroom to increase students’ problem solving. International Online Journal of Educational Sciences, 5(2), 361–369.

Chabibah, L. N., Siswanah, E., & Tsani, D. F. (2019). Analisis kemampuan pemecahan masalah siswa dalam menyelesaikan soal cerita barisan ditinjau dari adversity quotient [Analysis of students’ problem-solving abilities in solving word problem sequence in terms of adversity quotient]. Pythagoras: Jurnal Pendidikan Matematika, 14(2), 199–210. https://doi.org/10.21831/pg.v14i2.29024

Darojat, L., & Kartono, K. (2016). Kemampuan pemecahan masalah siswa dalam menyelesaikan soal open-ended berdasarkan AQ dengan learning cycle 7E [Students’ problem-solving abilities in solving open-ended problems based on AQ with 7E learning cycle]. Unnes Journal of Mathematics Education Research, 5(1), 1–8.

Farib, P. M., Ikhsan, M., & Subianto, M. (2019). Proses berpikir kritis matematis siswa sekolah menengah pertama melalui discovery learning [The process of mathematical critical thinking of junior high school students through discovery learning]. Jurnal Riset Pendidikan Matematika, 6(1), 99–117. https://doi.org/10.21831/jrpm.v6i1.21396

Hendrowati, T. Y. (2015). Pembentukan pengetahuan lingkaran melalui pembelajaran asimilasi dan akomodasi teori konstruktivisme Piaget [Knowledge construction of circle through learning assimilation and accommodation based on the Piaget’s theory of constructivism]. e-DuMath: Jurnal Pendidikan Matematika, 1(1), 1–16. https://doi.org/10.52657/je.v1i1.78

Irianti, N. P., Subanji, S., & Chandra, T. D. (2016). Proses berpikir siswa quitter dalam menyelesaikan masalah SPLDV berdasarkan langkah-langkah Polya [Thinking process of quitter’s student in solving system of linear equation two variables based on Polya’s procedure]. Jurnal Matematika dan Pendidikan Matematika, 1(2), 133–142. https://doi.org/10.26594/jmpm.v1i2.582

Isroil, A., Budayasa, I. K., & Masriyah, M. (2017). Profil berpikir siswa SMP dalam menyelesaikan masalah mate-matika ditinjau dari kemampuan matematika [Thinking profile of junior high school students in solving mathematics problems in terms of mathematical ability]. Jurnal Review Pembelajaran Matematika, 2(2), 93–105. https://doi.org/10.15642/jrpm.2017.2.2.93-105

Kuswana, W. S. (2013). Taksonomi berpikir [Taxonomy of thinking]. Remaja Rosdakarya.

Lailiyah, S., Kusaeri, K., & Rizki, W. Y. (2020). Identifikasi proses berpikir siswa dalam menyelesaikan masalah aljabar dengan menggunakan representasi graf [Identifying students’ thinking processes in solving algebraic problems using graph representations]. Jurnal Riset Pendidikan Matematika, 7(1), 25–44. https://doi.org/10.21831/jrpm.v7i1.32257

Mardika, F., & Insani, S. U. (2017). Adversity quotient and student’s problem-solving skill in mathematics. In C. Kusumawardani, D. Darmawan, E. Yulianti, N. Binatari, R. Kusumawati, D. Setyawarno & P. Utomo (Eds.), Proceedings of 4th International Conference on Research, Implementation and Education of Mathematics and Science (pp. 21–25). Faculty of Mathematics and Science, Yogyakarta State University. http://seminar.uny.ac.id/icriems/sites/seminar.uny.ac.id.icriems/files/prosiding2017/ME04%20Fitria%20Mardika.pdf

Masfingatin, T. (2013). Proses berpikir siswa sekolah menengah pertama dalam memecahkan masalah matematika ditinjau dari adversity quotient [The thinking process of junior high school students in solving mathe¬matical problems in terms of adversity quotient]. JIPM: Jurnal Ilmiah Pendidikan Matematika, 2(1), 1–8. http://doi.org/10.25273/jipm.v2i1.491

Matsuoka, C. (2007). Thinking processes in middle-school students: Looking at habits of the mind and philosophy for children Hawai’i [Doctoral dissertation, University of Hawai’i]. ProQuest Dissertations and Theses.

Misu, L. (2014). Mathematical problem solving of student by approach behavior learning theory. International Journal of Education and Research, 2(10), 181–188. http://www.ijern.com/journal/2014/October-2014/15.pdf

Nahdataeni, I., Sukayasa, S., & Linawati, L. (2015). Proses berpikir siswa dalam memecahkan masalah sistem persa¬maan linear dua variabel ditinjau dari gaya belajar di kelas X SMA Negeri 2 Palu [The thinking process of students in solving system of linear equations in two-variable in terms of learning styles in class X SMA Negeri 2 Palu]. Aksioma Jurnal Pendidikan Matematika, 4(2), 203–215. https://doi.org/10.22487/aksioma.v4i2.114

Ningrum, I. A. (2017). Analisis tingkat berpikir kreatif matematis peserta didik ditinjau dari adversity quotient kelas VIII MTs Muhammadiyah Bandar Lampung tahun ajaran 2016/2017 [Analysis of students’ mathematical creative thinking levels in terms of adversity quotient class VIII MTs Muhammadiyah Bandar Lampung in the academic year of 2016/2017] [Undergraduate thesis, Universitas Islam Negeri Raden Intan Lampung]. Repository UIN Raden Intan Lampung. http://repository.radenintan.ac.id/1608/

Nissa, I. C. (2015). Pemecahan masalah matematika: Teori dan contoh praktik [Mathematics problem solving: Theory and practical examples]. Duta Pustaka Ilmu.

Nurrohmah, A. I., Widodo, S. A., & Setiana, D. S. (2020). Proses berpikir siswa dalam memecahkan masalah matematika dengan strategi think pair share berbasis komik [The thinking process of students in solving mathematical problems using a comic-based think pair share strategy]. Union: Jurnal Ilmiah Pendidikan Matematika, 8(2), 215–227. https://doi.org/10.30738/union.v8i2.8065

Piaget, J. (2002). Tingkat perkembangan kognitif [Stages of cognitive development]. Gramedia.

Polya, G. (1973). How to solve it: A new aspect of mathematical method. Princeton University Press.

Pramesti, R. D. (2014). Proses berpikir siswa dalam menyelesaikan soal cerita tentang keliling dan luas persegi panjang ditinjau dari gender [The thinking process of students in solving story problems about the perimeter and area of a rectangle in terms of gender]. MATHEdunesa: Jurnal Ilmiah Pendidikan Matematika, 3(3), 189–194. https://doi.org/10.26740/mathedunesa.v3n3.p%25p

Purnamasari, L. D. (2019). Analisis proses berpikir dalam pemecahan masalah matematika Polya siswa berdasarkan tipe kepribadian pada sub materi himpunan siswa kelas VII SMP Negeri 1 Berbah tahun ajaran 2018/2019 [Analysis of thinking processes in Polya’s mathematical problem solving of students based on personality types in the sub-materials of set of seventh graders of SMP Negeri 1 Berbah for the academic year of 2018/2019] [Undergraduate thesis, Sanata Dharma University]. Repository Universitas Sanata Dharma. https://repository.usd.ac.id/34834/

Purwanto, W. R., Sukestiyarno, Y. L., & Junaedi, I. (2019). Proses berpikir siswa dalam memecahkan masalah matematika ditinjau dari perspektif gender [The thinking process of students in solving mathematical pro-blems in terms of gender perspective]. Prosiding Seminar Nasional Pascasarjana, 2(1), 894–900. https://proceeding.unnes.ac.id/index.php/snpasca/article/view/390

Rahimayanti, T. Y. (2016). Analisis proses berpikir dalam pemecahan masalah matematika Polya siswa kelas XI SMAN 1 Bangsri Jepara berdasarkan tipe kepribadian [Analysis of thinking processes in Polya’s mathematics problems solving for class XI students of SMAN 1 Bangsri Jepara based on personality type] [Undergraduate thesis, UIN Walisongo]. Walisongo Institutional Repository. http://eprints.walisongo.ac.id/id/eprint/5913/

Razzouk, R., & Shute, V. (2012). What is design thinking and why is it important? Review of Educational Research, 82(3), 330–348. https://doi.org/10.3102%2F0034654312457429

Retna, M., Mubarokah, L., & Suhartatik, S. (2013). Proses berpikir siswa dalam menyelesaikan soal cerita ditinjau berdasarkan kemampuan matematika [The thinking process of students in solving word problems based on mathematical ability]. Jurnal Pendidikan Matematika STKIP PGRI Sidoarjo, 1(2), 71–82.

Sanjaya, A., Johar, R., Ikhsan, M., & Khairi, L. (2018). Students’ thinking process in solving mathematical problems based on the levels of mathematical ability. Journal of Physics: Conference Series, 1088(1), 1–6. https://doi.org/10.1088/1742-6596/1088/1/012116

Santrock, J. W. (2009). Psikologi pendidikan [Educational psychology]. Salemba Humanika.

Siswono, T. Y. E. (2007). Penjenjangan kemampuan berpikir kreatif dan identifikasi tahap berpikir kreatif siswa dalam memecahkan dan mengajukan masalah matematika [The leveling of creative thinking skills and identifi-cation of students’ creative thinking stages in solving and proposing mathematical problems] [Doctoral dissertation, Universitas Negeri Surabaya].

Slavin, R. E. (2008). Cooperative learning: Teori, riset dan praktik [Cooperative learning: Theory, research, and practice]. Nusa Media.

Solso, R. L., Maclin, O. H., & Maclin, M. K. (2008). Psikologi kognitif [Cognitive psychology] (8th ed.). Erlangga.

Sopamena, P. (2017). Karakteristik proses berpikir mahasiswa dalam mengonstruksi bukti keterbagian [Characteristics of students’ thinking processes in constructing evidence of division]. Jurnal Matematika dan Pembelajaran, 5(2), 169–192. http://dx.doi.org/10.33477/mp.v5i2.244

Stoltz, P. G. (2000). Adversity quotient: Mengubah hambatan menjadi peluang [Adversity quotient: Turning obstacles into opportunities] (1st ed.). Grasindo.

Ulya, H., Kartono, K., & Retnoningsih, A. (2014). Analysis of mathematics problem solving ability of junior high school students viewed from students’ cognitive style. International Journal of Education and Research, 2(10), 577–582. https://www.ijern.com/journal/2014/October-2014/45.pdf

Wicaksono, D. B, Waluya, S. B., & Asih, T. S. N. (2018). Peran adversity question dan scaffolding terhadap peningkatan kemampuan pemecahan masalah matematika [The role of adversity quotient and scaffolding on improving mathematics problem solving skills]. Seminar Nasional Pendidikan Matematika Ahmad Dahlan, 6(1), 425-432. http://seminar.uad.ac.id/index.php/sendikmad/article/view/457

Widodo, S. A., & Wahyudin, W. (2018). Selection of learning media mathematics for junior school students. The Turkish Online Journal of Educational Technology, 17(1), 154–160. http://www.tojet.net/articles/v17i1/17115.pdf

Widyastuti, R. (2015). Proses berpikir siswa dalam menyelesaikan masalah matematika berdasarkan teori Polya ditinjau dari adversity quotient tipe climber [The thinking process of students in solving mathematical pro-blems based on Polya’s theory in terms of the climber type adversity quotient]. Al-Jabar: Jurnal Pendidikan Matematika, 6(2), 183–193. https://doi.org/10.24042/ajpm.v6i2.48

Wulandari, Y. O. (2014). Proses berpikir aljabar siswa berdasarkan taksonomi Marzano [Students’ algebraic thinking process based on Marzano’s taxonomy] [Master’s thesis, Pascasarjana Universitas Negeri Malang]. http://karya-ilmiah.um.ac.id/index.php/disertasi/article/view/36027

Yani, M., Ikhsan, M., & Marwan, M. (2016). Proses berpikir siswa sekolah menengah pertama dalam memecahkan masalah matematika berdasarkan langkah-langkah Polya ditinjau dari adversity quotient [The thinking process of junior high school students in solving mathematical problems based on Polya’s steps in terms of adversity quotient]. Jurnal Pendidikan Matematika, 10(1), 43–57. https://doi.org/10.22342/jpm.10.1.3278.43-57




DOI: https://doi.org/10.21831/pg.v16i1.39151

Refbacks

  • There are currently no refbacks.


PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:


Creative Commons License Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.

All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X

Visitor Number:

View Pythagoras Stats