Kemampuan berpikir kreatif matematis dalam penyelesaian soal open-ended jenis PISA berdasarkan level sekolah

Evie Dwy Wahyu Arista, Magister Program of Mathematics Education, Universitas Negeri Yogyakarta, Indonesia
Ali Mahmudi, Department of Mathematics Education, Universitas Negeri Yogyakarta, Indonesia

Abstract


Penelitian ini bertujuan untuk mendeskripsikan kemampuan berpikir kreatif matematis siswa dalam menyelesaikan soal open-ended jenis PISA ditinjau dari level sekolah. Jenis penelitian ini adalah penelitian survei dengan sampel penelitian adalah siswa kelas X SMA (n = 260) di Kabu­paten Lampung Timur dengan level sekolah tinggi (k = 5), sedang (k = 3) dan rendah (k = 2) ber­dasarkan akreditasi. Sampel penelitian ditentukan dengan stratified proporsional random sam­pling. Instrumen yang digunakan berupa tes kemampuan berpikir kreatif jenis soal open-ended PISA yang terdiri atas enam butir soal uraian dan pedoman wawancara. Instrumen tes yang digunakan telah dilakukan validasi isi oleh tiga orang ahli dengan rata-rata hasil validasi berka­tegori baik. Hasil penelitian menunjukkan bahwa kemampuan berpikir kreatif matematis siswa dalam menyelesaikan soal open-ended jenis PISA pada sekolah level tinggi berada pada kategori cukup, pada sekolah level sedang berada pada kategori kurang, sedangkan pada sekolah level rendah berada pada kategori cukup.

 

Mathematical creative thinking ability in solving open-ended problems of PISA type based on school level

Abstract

This research aimed to describe students' mathematical creative thinking ability in solving open-ended problems of PISA type based on the school level. The research was a survey with the sample was grade-ten students (n = 260) of senior high school with categories of the high (k = 5), medium (k = 3), and low school (k = 2) based on their accreditation in the district of Lampung Timur, Indonesia. We used stratified proportional random sampling to determine the sample. The instruments used in this research consisted of a creative thinking ability test with six con­structed response items and interview guidelines. Three experts had validated the instrument of a test, and it was proved to be valid in terms of content with a good category. We analyzed the collected data based on the indicator of creative thinking ability. The result showed that students' mathematical creative thinking ability to solve open-ended problem PISA type at high-level schools was in the moderate category, at medium-level schools was in the poor category, while at low-level schools in the moderate category.


Keywords


Kemampuan berpikir kreatif matematis; PISA; soal open-ended; mathematical creative thinking ability; open-ended problems

Full Text:

DOWNLOAD PDF

References


Allen, M. J., & Yen, W. M. (1979). Introduction to measurement theory. Brooks/Cole.

Apino, E. (2016). Mengembangkan kreativitas siswa dalam pembelajaran matematika melalui pembelajaran cre¬ative problem solving. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika, pp. 335–340. http://seminar.uny.ac.id/semnasmatematika/sites/seminar.uny.ac.id.semnasmatematika/files/PM-49.pdf

Brookhart, S. M. (2010). How to assess higher-order thinking skills in your classroom. ASCD.

Calder, N. (2018). Using Scratch to facilitate mathematical thinking. Waikato Journal of Education, 23(2), 43–58. https://doi.org/10.15663/wje.v23i2.654

Damayanti, H. T., & Sumardi, S. (2018). Mathematical creative thinking ability of junior high school students in solving open-ended problem. Journal of Research and Advances in Mathematics Education, 3(1), 36–45. https://doi.org/10.23917/jramathedu.v3i1.5869

Dhayanti, D., Johar, R., & Zubainur, C. M. (2018). Improving students’ critical and creative thinking through realistic mathematics education using Geometer's Sketchpad. Journal of Research and Advances in Mathematics Education, 3(1), 25–35. https://doi.org/10.23917/jramathedu.v3i1.5618

Fard, A. E., Bahador, A., Moghadam, M. N., Rajabi, H., & Moradi, A. N. (2014). The possible impact of problem-solving method of instruction on exceptional students' creativity. Journal of Education and Training Studies, 2(3), 60–68. https://doi.org/10.11114/jets.v2i3.342

Fitrianawati, M., & Hartono, H. (2016). Perbandingan keefektifan PBL berseting TGT dan GI ditinjau dari prestasi belajar, kemampuan berpikir kreatif dan toleransi. Jurnal Riset Pendidikan Matematika, 3(1), 55–65. https://doi.org/10.21831/jrpm.v3i1.9684

Gomez, J. G. (2007). What do we know about creativity? The Journal of Effective Teaching, 7(1), 31–43. https://files.eric.ed.gov/fulltext/EJ1055657.pdf

Happy, N., & Widjajanti, D. B. (2014). Keefektifan PBL ditinjau dari kemampuan berpikir kritis dan kreatif matematis, serta self-esteem siswa SMP. Jurnal Riset Pendidikan Matematika, 1(1), 48–57. https://doi.org/10.21831/jrpm.v1i1.2663

Hashimoto, Y. (1997). The methods of fostering creativity through mathematical problem solving. International Reviews on Mathematical Education, 29(3), 86–87. https://www.emis.de/journals/ZDM/zdm973a5.pdf

Hidayat, P. W., & Widjajanti, D. B. (2018). Analisis kemampuan berpikir kreatif dan minat belajar siswa dalam mengerjakan soal open ended dengan pendekatan CTL. Pythagoras: Jurnal Pendidikan Matematika, 13(1), 63–75. https://doi.org/10.21831/pg.v13i1.21167

Kemendikbud. (2016a). Lampiran Peraturan Menteri Pendidikan dan Kebudayaan Nomor 22 Tahun 2016 tentang Standar Proses Pendidikan Dasar dan Menengah. http://vervalsp.data.kemdikbud.go.id/prosespembelajaran/file/Permendikbud_Tahun2016_Nomor022_Lampiran.pdf

Kemendikbud. (2016b). Peringkat dan capaian PISA Indonesia mengalami peningkatan. https://www.kemdikbud.go.id/main/blog/2016/12/peringkat-dan-capaian-pisa-indonesia-mengalami-peningkatan

Kitto, J., Lok, D., & Rudowicz, E. (1994). Measuring creative thinking: An activity-based approach. Creativity Research Journal, 7(1), 59–69. https://doi.org/10.1080/10400419409534509

Kwon, O. N., Park, J. S., & Park, J. H. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51–61. https://doi.org/10.1007/BF03036784

Mahmudi, A., & Sumarmo, U. (2011). Pengaruh strategi Mathematical Habits of Mind (MHM) berbasis masalah terhadap kreativitas siswa. Cakrawala Pendidikan, 30(2), 216–229. https://doi.org/10.21831/cp.v0i2.4229

Maskur, R., Sumarno, S., Rahmawati, Y., Pradana, K., Syazali, M., Septian, A., & Palupi, E. K. (2020). The effectiveness of problem based learning and aptitude treatment interaction in improving mathematical creative thinking skills on Curriculum 2013. European Journal of Educational Research, 9(1), 375–383. https://doi.org/10.12973/eu-jer.9.1.375

Miatun, A., & Nurafni, N. (2019). Profil kemampuan berpikir kreatif matematis ditinjau dari gaya kognitif reflective dan impulsive. Jurnal Riset Pendidikan Matematika, 6(2), 150–164. https://doi.org/10.21831/jrpm.v6i2.26094

Mihajlović, A., & Dejić, M. (2015). Using open-ended problems and problem posing activities in elementary mathematics classroom. In F. M. Singer, F. Toader, & C. Voica (Eds.), Proceedings of The 9th Mathematical Creativity and Giftedness International Conference (pp. 34–40). The International Group for Mathematical Creativity and Giftedness. https://www.mcg-9.net/pdfuri/MCG-9-Conference-proceedings.pdf#page=36

Nitko, A. J., & Brookhart, S. M. (2011). Educational assessment of students (6th ed.). Pearson.

Noer, S. H. (2011). Kemampuan berpikir kreatif matematis dan pembelajaran matematika berbasis masalah open-ended. JPM: Jurnal Pendidikan Matematika, 5(1), 104–111. https://doi.org/10.22342/jpm.5.1.824.

OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. OECD Publishing. https://doi.org/10.1787/9789264190511-en

Pelfrey, R. (2000). Open-ended questions for mathematics. https://www.uky.edu/OtherOrgs/ARSI/www.uky.edu/pub/arsi/openresponsequestions/mathorq.pdf

Rhosyida, N., & Jailani, J. (2014). Pengembangan modul matematika SMK bidang seni, kerajinan, dan pariwisata berbasis open-ended problem sebagai implementasi KTSP. Jurnal Riset Pendidikan Matematika, 1(1), 35–47. https://doi.org/10.21831/jrpm.v1i1.2662

Rochani, S. (2016). Keefektifan pembelajaran matematika berbasis masalah dan penemuan terbimbing ditinjau dari hasil belajar kognitif kemampuan berpikir kreatif. Jurnal Riset Pendidikan Matematika, 3(2), 273–283. https://doi.org/10.21831/jrpm.v3i2.5722

Rochmad, R., Agoestanto, A., & Kharis, M. (2018). Characteristic of critical and creative thinking of students of mathematics education study program. Journal of Physics: Conference Series, 983(1), 1–4. https://doi.org/10.1088/1742-6596/983/1/012076

Sanders, S. (2016). Critical and creative thinkers in mathematics classrooms. Journal of Student Engagement: Education Matters, 6(1), 19–27. https://ro.uow.edu.au/jseem/vol6/iss1/4

Saputra, P. R. (2016). Pembelajaran geometri berbantuan geogebra dan cabri ditinjau dari prestasi belajar, berpikir kreatif dan self-efficacy. Pythagoras: Jurnal Pendidikan Matematika, 11(1), 59–68. https://doi.org/10.21831/pg.v11i1.9680

Sariningsih, R., & Herdiman, I. (2017). Mengembangkan kemampuan penalaran statistik dan berpikir kreatif matematis mahasiswa di Kota Cimahi melalui pendekatan open-ended. Jurnal Riset Pendidikan Matematika, 4(2), 239–246. https://doi.org/10.21831/jrpm.v4i2.16685

Sudarma, M. (2013). Mengembangkan keterampilan berpikir kreatif. Rajawali Pers.

Suharnan, S. (2005). Psikologi kognitif. Srikandi.

Trilling, B., & Fadel, C. (2009). 21st century skills: Learning for life in our times. Jossey-Bass.

Wu, H. (1994). The role of open-ended problems in mathematics education. Journal of Mathematical Behavior, 13(1), 115–128. https://doi.org/10.1016/0732-3123(94)90044-2




DOI: https://doi.org/10.21831/pg.v15i1.34606

Refbacks

  • There are currently no refbacks.


PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:


Creative Commons License Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.

All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X

Visitor Number:

View Pythagoras Stats