Implementation of Kalman Filter With Pi-Controller for Temperature Sensor in Fish Pond Monitoring System
DOI:
https://doi.org/10.21831/jraee.v2i1.552Keywords:
Kalman Filter, PI Controller, Firebase Realtime Database, Temperature Sensor, Fish PondAbstract
The research aims to determine monitoring the temperature in fish ponds is crucial for successful cultivation, especially in tropical climates that often experience hot weather. This study proposes an approach using the Kalman Filter method and PI (Proportional-Integral-Derivative). Aside from that, to controller to improve the accuracy of monitoring the temperature in fish ponds. Integration with the Firebase Realtime Database allows for real-time data monitoring. Testing was conducted by comparing the DS18B20 temperature sensor without a filter with three variations of the Kalman Filter and PI controller. The results show that using Kalman Filter 3 with the PI controller resulted in a significant reduction in error and noise compared to using Kalman Filter alone. In conclusion, the integration of the Kalman Filter and PI controller with the Firebase Realtime Database can improve the accuracy of monitoring the temperature in fish ponds and has positive implications for increasing efficiency and fish welfare.
Downloads
References
P. A. Rosyady and M. A. Agustian, “Sistem Monitoring dan Kontrol Keasaman Larutan dan Suhu Air pada Kolam Ikan Mas Koki dengan Smartphone Berbasis IoT,” Techne´: Jurnal Ilmiah Elektroteknika, vol. 21, no. 2, pp. 169-188, 2022, doi: 10.31358/techne.v21i2.317.
S. Indriyanto, F. T. Syifa, and H. A. Permana, “Sistem Monitoring Suhu Air pada Kolam Benih Ikan Koi Berbasis Internet of Things,” TELKA-Jurnal Telekomunikasi, Elektronika, Komputasi dan Kontrol, vol. 6, no. 1, pp. 10–19, 2020, doi: 10.15575/telka.v6n1.10-19.
R. Pramana, “Perancangan Sistem Kontrol Dan Monitoring Kualitas Air Dan Suhu Air Pada Kolam Budidaya Ikan,” Jurnal Sustainable: Jurnal Hasil Penelitian dan Industri Terapan, vol. 7, no. 1, pp. 13–23, doi: 10.31629/sustainable.v7i1.435.
G. F. Welch, Kalman filter, Computer Vision: A Reference Guide, pp. 1–3, Springer, 2020.
S. Mohinder, Kalman Filtering Theory and Practice Using Matlab, 2001
A. Winursito, I. Masngut, and G. N. P. Pratama, “Development and Implementation of Kalman Filter for Iot Sensors: Towards a Better Precision Agriculture,” In 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) IEEE, pp. 360-364, doi: 10.1109/ISRITI51436.2020.9315464.
S. Suriana, A. P. Lubis, and E. Rahayu, “Sistem Monitoring Jarak Jauh Pada Suhu Kolam Ikan Nila Bangkok Memanfaatkan Internet of Things (IOT) Berbasis NODEMCUESP8266,” Jurnal Teknologi dan Sistem Informasi (JUTSI), vol. 1, no. 1, pp. 1–8, 2021, doi: 10.33330/jutsi.v1i1.1004.
K. M. Ilham, “Rancang Bangun Sistem Kendali Suhu Air Kolam Benih Lobster Dengan Pengendali Pid Berbasis Mikrokontroler ESP32”, Fakultas Teknik, 2023.
A. S. Wicaksana, and B. Suprianto, “Rancang Bangun Sistem Pengendalian PH Air Pada Tambak Ikan Bandeng Menggunakan Kontroller PID Berbasis LabView,” Jurnal Teknik Elektro, vol. 9, no. 2, 2020, doi: 10.26740/jte.v9n2.p%25p.
S. Mulyani, Idris, et al., “Analisis Perencanaan Pembangkit Listrik Tenaga Surya Sebagai Catu Daya Aerator dan Alat Pemberi Pakan Ikan,” In Seminar Nasional Teknik Elektro dan Informatika (SNTEI) 2023, vol. 9, no. 1, pp. 59–66.
A. Ma’arif, I. Iswanto, A. A. Nuryono, and R. I. Alfian, “Kalman Filter for Noise Reducer on Sensor Readings,” Signal and Image Processing Letters, vol. 1, no. 2, pp. 50–61, 2019, doi: 10.31763/simple.v1i2.2.
T. A. Rahmawati, G. N. P. Pratama, A. I. Cahyadi, S. Herdjunanto, and others, “A Remedy Design of Pi Controller for Liquid Level Control,” In 2018 International Conference on Information and Communications Technology (ICOIACT) IEEE, pp. 661-666, doi: 10.1109/ICOIACT.2018.8350821.
A. Maarif, R. D. Puriyanto, and F. R. T. Hasan, “Robot Keseimbangan Dengan Kendali Proporsional- Integral-Derivatif (PID) dan Kalman Filter,” IT Journal Research and Development, vol. 4, no. 2, 2020, doi: 10.25299/itjrd.2020.vol4(2).3900, doi: 10.25299/itjrd.2020.vol4(2).3900.
L. Lasmadi, A. I. Cahyadi, R. Hidayat, and S. Herdjunanto, “Inertial Navigation for Quadrotor Using Kalman Filter With Drift Compensation,” International Journal of Electrical and Computer Engineering, Publisher: IAES Institute of Advanced Engineering and Science, vol. 7, no. 5, p. 2596, 2017, doi: 10.11591/ijece.v7i5.pp2596-2604.
M. Han, K. Kim, J. Lee, et al., “Implementation of Unicycle Segway Using Unscented Kalman Filter in LQR Control,” In 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) IEEE, pp. 695–698, doi: 10.1109/URAI.2013.6677427. [
T. Herlambang, “Estimasi Posisi Magnetic Levitation Ball Menggunakan Metode Akar Kuadrat En- Semble Kalman Filter (Ak-Enkf)”, REM (Rekayasa Energi Manufaktur) Jurnal, vol. 2, no. 1, pp. 45–49, 2017, doi: 10.21070/r.e.m.v2i1.768.
M. Khairudin, S. Yatmono, I. M. Nashir, F. Arifin, W. Aulia, et al., “Exhaust Fan Speed Controller Using Fuzzy Logic Controller,” Journal of Physics: Conference Series, vol. 1737, no. 1, p. 012046, 2021, doi: 10.1088/1742-6596/1737/1/012046.
S. Nurmaini, and S. Pangidoan, “Localization of Leader-Follower Robot Using Extended Kalman Filter”, Computer Engineering and Applications,” vol. 7, no. 2, 2018, doi: 10.18495/COMENGAPP.V7I2.253.