Structure, Function, and Benefits of Chloroplast DNA: Review Article

Authors

  • Akhmad Taufiq Universitas Negeri Yogyakarta
  • Faustine Rahma Amelia
  • Zaskya Anjung Fortuna
  • Aulia Nyndita Wardani
  • Indraswari Ayu Camelia

DOI:

https://doi.org/10.21831/ijobi.v3i1.1061

Keywords:

Chloroplast DNA (cpDNA) , Chloroplast Function , Chloroplast Structure, Gene expression (PEP/NEP), DNA Barcoding

Abstract

Chloroplasts are double-membrane organelles that contain extranuclear DNA. The existence of this chloroplast genome (cpDNA) has an essential value for plant survival. This article will guide readers to comprehensively explore and answer questions about cpDNA, including the structure, function, mechanism expression, and inheritance, as well as the benefits of cpDNA. The method and analysis used are articles reviewed by searching, collecting, and analyzing related research articles. The main results obtained are the chloroplast genome in the form of a single quadripartite circular, its primary function for the synthesis of photosynthetic enzymes, and other functions as the biosynthesis of macromolecular compounds and secondary chloroplast metabolites, and plays a role in response to environmental stress, while the replication mechanism follows the maternal pattern in most Angiosperms and paternal in most Gymnosperms. The benefits of the chloroplast genome itself include the manufacture of recombinant pharmaceutical proteins, DNA barcoding, and Transplastomic. These results indicate that cpDNA has a crucial role in the survival of plants and humans. Further research and review regarding the relationship between environmental variables and the chloroplast genome are needed to complete the discussion on cpDNA.

Downloads

Download data is not yet available.

References

Abd-Aziz, N., Tan, B. C., Rejab, N. A., Othman, R. Y., & Khalid, N. (2020). A new plant expression system for producing pharmaceutical proteins. Molecular Biotechnology, 62, 240-251.

Arlen, P. A., Falconer, R., Cherukumilli, S., Cole, A., Cole, A. M., Oishi, K. K., & Daniell, H. (2007). Field production and functional evaluation of chloroplast‐derived interferon‐α2b. Plant biotechnology journal, 5(4), 511-525.

Azani, N., Babineau, M., Bailey, C.D., Banks, H., Barbosa, A.R., Pinto, R.B., Boatwright, J.S., Borges, L.M., Brown, G.K., Bruneau, A. and Candido, E. (2017). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). taxon, 66(1), pp.44-77.

Bendich AJ, (2004). Circular chloroplast chromosomes: the grand illusion. The Plant Cell. 16 (7): 1661–6. doi:10.1105/tpc.160771. PMC 514151. PMID 15235123.

CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12794–12797. https://doi.org/10.1073/pnas.0905845106

Daniell, H., Lin, C. S., Yu, M., and Chang, W. J. (2016). Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biology, 17(1),1–29, DOI: https://doi.org/10.1186/s13059-016-1004-2.

Feizi, A. and Baghbankohnehrouz, B. (2021) .Overexpression of the recombinant human interferon-beta (rhIFN-β) gene in tobacco chloroplasts. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 102(4),367–376, DOI:10.5114/BTA.2021.111094.

Fu, N., Xu, Y., Jin, L., Xiao, T.-W., Song, F., Yan, H.-F., Chen, Y.-S., & Ge, X.-J. (2024). Testing plastomes and nuclear ribosomal DNA sequences as the next-generation DNA barcodes for species identification and phylogenetic analysis in Acer. BMC Plant Biology, 24, 445. https://doi.org/10.1186/s12870-024-05073-w

Gan, P., Liu, F., Li, R., Wang, S. and Luo, J. (2019). Chloroplasts— Beyond Energy Capture and Carbon Fixation: Tuning of Photosynthesis in Response to Chilling Stress. International Journal of Molecular Sciences, 20(20), p.5046, DOI:10.3390/ijms20205046.

Gangl, D., Zedler, J.A.Z., Włodarczyk, A., Jensen, P.E., Purton, S. and Robinson, C. (2015). Expression and Membrane-Targeting of an Active Plant Cytochrome P450 in The Chloroplast of The Green Alga Chlamydomonas reinhardtii. Phytochemistry, 110, 22–28, DOI:10.1016/j.phytochem.2014.12.006.

Gonzalez, M.A., Baraloto, C., Engel, J., Mori, S.A., Pétronelli, P., Riéra, B., Roger, A., Thébaud, C. and Chave, J. (2009). Identification of Amazonian trees with DNA barcodes. PLoS one, 4(10), p.e7483.

Green, B.R .(2011).Chloroplast genomes of photosynthetic eukaryotes. Plant Journal, 66(1), pp. 34–44, DOI: 10.1111/j.1365-313X.2011.04541.x.

Hajdukiewicz PRJ, Allison LA, Maliga P. (1997). The two RNA polymerase encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J, 4041-4048, DOI:10.1093/emboj/16.13.4041

Jackson HO, Taunt HN, Mordaka PM, Smith AG, Purton S .(2021). The Algal Chloroplast as a Testbed for Synthetic Biology Designs Aimed at Radically Rewiring Plant Metabolism. Front Plant Sci, DOI: 10.3389/fpls.2021.708370.

Jones, F.A., Erickson, D.L., Bernal, M.A., Bermingham, E., Kress, W.J., Herre, E.A., Muller-Landau, H.C. and Turner, B.L. (2011). The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling. PLoS One, 6(9), p.e24506.

Jong-Hwa, K., Sung-Il, L., Bo-Ram, K., Ik-Young, C., Peter, R., and Nam-Soo, K. (2017). Chloroplast genomes of Lilium lancifolium, L. amabile, L. callosum, and L. philadelphicum: Molecular characterization and their use in phylogenetic analysis in the genus Lilium and other allied genera in the order Liliales. PLoS ONE, 12(10), pp. 1–15, DOI:10.1371/journal.pone.0186788

Kingston-Smith, A.H., Harbinson, J., Williams, J. and Foyer, C.H. (1997). Effect of Chilling on Carbon Assimilation, Enzyme Activation, and Photosynthetic Electron Transport in the Absence of Photoinhibition in Maize Leaves. Plant Physiology, 114(3), 1039–1046, DOI:10.1104/pp.114.3.1039.

Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH–psbA spacer region. PLOS ONE, 2(6), e508. https://doi.org/10.1371/journal.pone.0000508

Krishnan NM, Rao BJ. (2009). A comparative approach to elucidate chloroplast genome replication. BMC Genomics. 10 (237): 237. doi:10.1186/1471-2164-10-237. PMC 2695485. PMID 19457260.

Ling, Q. and Jarvis, P. (2015). Regulation of Chloroplast Protein Import by the Ubiquitin E3 Ligase SP1 is Important for Stress Tolerance in Plants. Current Biology, 25(19), 2527–2534. DOI:10.1016/j.cub.2015.08.015.

Liu, Z. F., Ci, X. Q., Li, L., Li, H. W., Conran, J. G., & Li, J. (2017). DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PloS ONE, 12(4), e0175788, DOI:10.1371/journal.pone.0175788.

Maghfiroh, K. (2017). Identification of Chlorophyll Content in Genus Piper (Sirih) as Food Supplement Candidate. Teknologi Pangan: Media Informasi Dan Komunikasi Ilmiah Teknologi Pertanian 8 (1), 93-98, DOI:10.35891/tp.v8i1.540

Martins, M.Q., Rodrigues, W.P., Fortunato, A.S., Leitão, A.E., Rodrigues, A.P., Pais, I.P., Martins, L.D., Silva, M.J., Reboredo, F.H., Partelli, F.L., Campostrini, E., Tomaz, M.A., Scotti-Campos, P., Ribeiro-Barros, A.I., Lidon, F.J.C., DaMatta, F.M. and Ramalho, J. . (2016). Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp. Frontiers in Plant Science, 7, DOI:10.3389/fpls.2016.00947.

Martin, G., Baurens, F.C., Cardi, C., Aury, J.M. and D’hont, A. (2013). The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PloS one, 8(6), e67350.

Maulid, R., R., Laily, A., R. (2015). Kadar total pigmen klorofil dan senyawa antosianin ekstrak kastuba (Euphorbia pulcherrima) berdasarkan umur daun. Prosiding KPSDA 1 (1).

Nevill, P.G., Zhong, X., Tonti-Filippini, J., Byrne, M., Hislop, M., Thiele, K., Van Leeuwen, S., Boykin, L.M. and Small, I. (2020). Large scale genome skimming from herbarium material for accurate plant identification and phylogenomics. Plant Methods, 16, 1-8.

Oey, M., Lohse, M., Kreikemeyer, B. and Bock, R. (2009). Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. The plant journal, 57(3), pp.436-445, DOI:10.1111/j.1365-313X.2008.03702.x

Palmer, J. D., Jansen, R. K., Michaels, H. J., Chase, M. W., James, R., Palmer, D., and Manhart, J. R . (2012). Variation and Plant Phylogeny1, Garden, 75(4), 1180–1206.

Pang, X., Liu, H., Wu, S., Yuan, Y., Li, H., Dong, J., Liu, Z., An, C., Su, Z. and Li, B. (2019). Species identification of oaks (Quercus L., Fagaceae) from gene to genome. International journal of molecular sciences, 20(23), p.5940.

Pulido, P., Llamas, E. and Rodriguez-Concepcion, M. (2017). Both Hsp70 Chaperone and Clp Protease Plastidial Systems are Required for Protection Against Oxidative Stress. Plant Signaling & Behavior, 12(3), p.e1290039, DOI:10.1080/15592324.2017.1290039.

Rajabi-Memari, H., Jalali-Javaran, M., Rasaee, M.J., Rahbari Zadeh, F., Forouzandeh-Moghadam, M. and Esmaili, A. (2006). Expression and characterization of a recombinant single-domain monoclonal antibody against MUC1 mucin in tobacco plants. Hybridoma, 25(4), pp.209-215, DOI:10.1089/hyb.2006.25.209

Rossi, S., Burgess, P., Jespersen, D. and Huang, B. (2017). Heat-Induced Leaf Senescence Associated with Chlorophyll Metabolism in Bentgrass Lines Differing in Heat Tolerance. Crop Science, 57(S1), p.S-169-S-178, DOI:10.2135/cropsci2016.06.0542.

Serrano, I., Audran, C. and Rivas, S. (2016).Chloroplasts at work during plant innate immunity. Journal of Experimental Botany, 67(13), pp.3845–3854, DOI:10.1093/jxb/erw088.

Shi, H., Jiang, C., Ye, T., Tan, D., Reiter, R.J., Zhang, H., Liu, R. and Chan, Z. (2014). Comparative Physiological, Metabolomic, and Transcriptomic Analyses Reveal Mechanisms of Improved Abiotic Stress Resistance in Bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. Journal of Experimental Botany, 66(3),681–694, DOI:10.1093/jxb/eru373.

Soliman, M.H., Alayafi, A.A.M., El Kelish, A.A. and Abu-Elsaoud, A.M. (2018). Acetylsalicylic Acid Enhance Tolerance of Phaseolus Vulgaris L. to Chilling Stress, Improving Photosynthesis, Antioxidants and Expression of Cold Stress Responsive Genes. Botanical Studies, 59(1), DOI:10.1186/s40529-018-0222-1.

Song, Y., Feng, L., Alyafei, M.A.M., Jaleel, A. and Ren, M. (2021). Function of Chloroplasts in Plant Stress Responses. International Journal of Molecular Sciences, 22(24),13464. DOI:10.3390/ijms222413464.

Sugita M, Sugiura M. (1996). Regulation of gene expression in chloroplasts of higher Plants. Plant Molecular Biology, 32:315-326, DOI:10.1007/BF00039388.

Triani, N. (2021). Aplikasi Penanda Molekuler cpSSR untuk Tanaman Jeruk Hasil Fusi Protoplas. Prosiding Seminar Nasional Agroteknologi, 978–623.

Vacca, R.A., Valenti, D., Bobba, A., Merafina, R.S., Passarella, S. and Marra, E. (2006). Cytochrome c Is Released in a Reactive Oxygen Species-Dependent Manner and Is Degraded via Caspase-Like Proteases in Tobacco Bright-Yellow 2 Cells en Route to Heat Shock-Induced Cell Death. Plant Physiology, 141(1), 208–219. DOI:10.1104/pp.106.078683.

Wannarat, P., Estavillo, G.M., Chan, K.X., Tee, E.E., Diep, G., Crisp, P.A., Yin, P.S., Chenchen, Z., Jiaen, Q., Park, J., Tiem, Y.M., Nazia, N., Yadav, A.K., Benjamin, S., Rathjen, J., Cazzonelli, C.I., Wilson, P.B., Matthew, G., Zhong-Hua, C. and Pogson, B.J. (2017). A Chloroplast Retrograde Signal, 3’-Phosphoadenosine 5’-Phosphate, Acts as a Secondary Messenger in Abscisic Acid Signaling in Stomatal Closure and Germination. ProQuest, DOI:10.7554/eLife.23361.

Wang, S., Bai, G., Wang, S., Yang, L., Yang, F., Wang, Y., Zhu, J.-K. and Hua, J. (2016). Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis. PLOS Genetics, 12(5), p.e1006027, DOI:10.1371/journal.pgen.1006027.

Wang, Q.-L., Chen, J.-H., He, N.-Y. and Guo, F.-Q. (2018). Metabolic Reprogramming in Chloroplasts under Heat Stress in Plants. International Journal of Molecular Sciences, 19(3), p.849, DOI:10.3390/ijms19030849.

Wicke, S., Schneeweiss, G. M., dePamphilis, C. W., Müller, K. F., and Quandt, D. (2011). The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Molecular Biology, 76(3–5), pp. 273–297, DOI: 10.1007/s11103-011-9762-4.

Xue, M., Guo, T., Ren, M., Wang, Z., Tang, K., Zhang, W. and Wang, M. (2019). Constitutive Expression of Chloroplast Glycerol-3-Phosphate Acyltransferase from Ammopiptanthus Mongolicus Enhances Unsaturation of Chloroplast Lipids and Tolerance to Chilling, Freezing and Oxidative Stress in Transgenic Arabidopsis. Plant Physiology and Biochemistry, 143, pp.375–387, DOI:10.1016/j.plaphy.2019.07.019.

Yoo, Y.-H., Nalini Chandran, A.K., Park, J.-C., Gho, Y.-S., Lee, S.-W., An, G. and Jung, K.-H. (2017). OsPhyB-Mediating Novel Regulatory Pathway for Drought Tolerance in Rice Root Identified by a Global RNA-Seq Transcriptome Analysis of Rice Genes in Response to Water Deficiencies. Frontiers in Plant Science, 8, DOI:10.3389/fpls.2017.00580.

Zhang, Y., Guo, Y.M., Li, T.J., Chen, C.H., Shen, K.N. and Hsiao, C.D. (2016). The complete chloroplast genome of Gracilariopsis lemaneiformis, an important economic red alga of the family Gracilariaceae. Mitochondrial DNA Part B, 1(1),.2-3.

Zhu, B., Feng, Q., Yu, J., Yu, Y., Zhu, X., Wang, Y., Guo, J., Hu, X., and Cai, M. (2020). Chloroplast genome features of an important medicinal and edible plant: Houttuynia cordata (Saururaceae). PLoS ONE, pp.1–16, DOI: 10.1371/journal.pone.0239823.

Downloads

Published

2025-12-23