Implementation of Vision Transformer (ViT) Method in Identifying Orchid Genus Based on Flower Images
DOI:
https://doi.org/10.21831/elinvo.v10i2.90056Keywords:
orchids, identification, vision transformerAbstract
There are about 15,000 to 20,000 orchid species around the world, spread across more than 900 genera. They come in many different shapes, sizes, and colors. This wide range of species makes it hard to tell them apart, especially for people who aren't experts. Bengkulu is one of the provinces on the island of Sumatra. It is known for its historical and cultural heritage as well as its rich biodiversity, especially its native plants like orchids. However, it is still hard to tell what they are. The identification process can be made better by using the breakthrough in artificial intelligence of the transformer. The goal of this study is to create an Android app that can use the Vision Transformer (ViT) architecture to identify five types of orchids: Bulbophyllum, Cymbidium, Dendrobium, Phalaenopsis, and Vanda. We used open-source libraries to collect data, which included 1,500 images that went through preprocessing steps. The experimental results show that the ViT-Base16 model with 25 epochs did the best job, getting an accuracy of 0.98 on the test dataset. However, it was hard to classify the genus Dendrobium in all trials because it had a lot of different shapes. The application testing gave good results, with scores of 81.13 for ease of use, 82.5 for accuracy, and 83.06 for usefulness. These results indicate that the application successfully aids in the identification of orchid genera, serving as a useful resource for both educational and practical applications
References
[1] A. Nursalikah, “Peneliti Temukan 160 Spesies Anggrek di Bengkulu,” tekno.republika.co.id. [Online]. Available: https://tekno.republika.co.id/berita/pfnzzg366/peneliti-temukan-160-spesies-anggrek-di-bengkulu
[2] A. Monawati, D. Rhomadhoni, and N. R. Hanik, “Identifikasi Hama dan Penyakit Pada Tanaman Anggrek Bulan (Phalaenopsis amabilis),” Florea J. Biol. dan Pembelajarannya, vol. 8, no. 1, p. 12, 2021, doi: 10.25273/florea.v8i1.9002.
[3] D. P. Pamungkas, “Ekstraksi Citra menggunakan Metode GLCM dan KNN untuk Identifikasi Jenis Anggrek (Orchidaceae),” Innov. Res. Informatics, vol. 1, no. 2, pp. 51–56, 2019, doi: 10.37058/innovatics.v1i2.872.
[4] R. P. Putra, “Identifikasi Jenis Tanaman Anggrek Melalui Tekstur Bunga dengan Tapis Gabor dan M-SVM,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 6, no. 1, p. 29, 2021, doi: 10.31328/jointecs.v6i1.1746.
[5] B. Prapitasari, “Keanekaragaman dan Kemelimpahan Jenis Anggrek (Orchidaceae) di Resort Selabintana Taman Nasional Gunung Gede Pangrango (TNGGP) Jawa Barat,” Biosf. J. Biol. dan Pendidik. Biol., vol. 5, no. 1, pp. 24–30, Jun. 2020, doi: 10.23969/biosfer.v5i1.2569.
[6] R. E. Wahyuni, “PERANCANGAN SISTEM PAKAR IDENTIFIKASI PENYAKIT DAN HAMA TANAMAN ANGGREK DENGAN METODE CERTAINTY FACTOR,” Progr. Stud. Tek. Inform. Jur. Tek. Elektro Fak. Tek. Univ. Tanjungpura, no. 1, pp. 1–5, 2019.
[7] E. Purwandari, Konsep dan Teori Pengolahan Citra Digital, vol. 1. 2018. [Online]. Available: https://www.researchgate.net/publication/387055862_Konsep_dan_Teori_Pengolahan_Citra_Digital
[8] E. Purwandari, Teori dan Aplikasi Pengolahan Citra Digital. 2019. [Online]. Available: https://www.researchgate.net/publication/387055808_Teori_dan_Aplikasi_Pengolahan_Citra_Digital
[9] R. Uthama, B. Hendrik, M. T. Informatika, F. I. Komputer, U. P. Indonesia, and U. M. Riau, “Vision Transformer untuk Identifikasi 15 Variasi Citra Ikan Koi,” J. Comput. Sci. Inf. Technol. ( CoSciTech ), vol. 5, no. 1, pp. 159–168, 2024.
[10] H. Thisanke, C. Deshan, K. Chamith, S. Seneviratne, R. Vidanaarachchi, and D. Herath, “Semantic segmentation using Vision Transformers: A survey,” Eng. Appl. Artif. Intell., vol. 126, p. 106669, Nov. 2023, doi: 10.1016/j.engappai.2023.106669.
[11] M. A. Leonardi and A. Y. Chandra, “Analisis Perbandingan CNN dan Vision Transformer untuk Klasifikasi Biji Kopi Hasil Sangrai,” J. Media Inform. Budidarma, vol. 8, pp. 1398–1407, 2024, doi: 10.30865/mib.v8i3.7732.
[12] S. Jamil, M. Jalil Piran, and O.-J. Kwon, “A Comprehensive Survey of Transformers for Computer Vision,” Drones, vol. 7, no. 5, p. 287, Apr. 2023, doi: 10.3390/drones7050287.
[13] X. Zhai et al., “AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE,” ICLR 2021, 2021.
[14] H. Bichri, A. Chergui, and M. Hain, “Investigating the Impact of Train / Test Split Ratio on the Performance of Pre-Trained Models with Custom Datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 2, pp. 331–339, 2024, doi: 10.14569/IJACSA.2024.0150235.
[15] S. C. Haynes, P. Johnston, and E. Elyan, “Generalisation challenges in deep learning models for medical imagery: insights from external validation of COVID-19 classifiers,” Multimed. Tools Appl., vol. 83, no. 31, pp. 76753–76772, 2024, doi: 10.1007/s11042-024-18543-y.
[16] T. B. Sasongko, “Komparasi dan Analisis Kinerja Model Algoritma SVM dan PSO-SVM (Studi Kasus Klasifikasi Jalur Minat SMA),” J. Tek. Inform. dan Sist. Inf., vol. 2, no. 2, pp. 244–253, 2016, doi: 10.28932/jutisi.v2i2.476.
[17] R. R. Sani, Y. A. Pratiwi, S. Winarno, E. D. Udayanti, and F. Alzami, “Analisis Perbandingan Algoritma Naive Bayes Classifier dan Support Vector Machine untuk Klasifikasi Berita Hoax pada Berita Online Indonesia,” J. Masy. Inform., vol. 13, no. 2, pp. 85–98, 2022, doi: 10.14710/jmasif.13.2.47983.
[18] W. Welda, D. M. D. U. Putra, and A. M. Dirgayusari, “Usability Testing Website Dengan Menggunakan Metode System Usability Scale (Sus)s,” Int. J. Nat. Sci. Eng., vol. 4, no. 3, pp. 152–161, Nov. 2020, doi: 10.23887/ijnse.v4i2.28864.
[19] J.-W. Park, Y.-H. Cho, M.-K. Park, and Y.-D. Kim, “Consumer Usability Test of Mobile Food Safety Inquiry Platform Based on Image Recognition,” Sustainability, vol. 16, no. 21, p. 9538, Nov. 2024, doi: 10.3390/su16219538.
[20] G. M. Sullivan and A. R. Artino, “Analyzing and Interpreting Data From Likert-Type Scales,” J. Grad. Med. Educ., vol. 5, no. 4, pp. 541–542, Dec. 2013, doi: 10.4300/JGME-5-4-18.
[21] A. Z. Rao and M. A. Hasan, “Evaluation of a Chair-Mounted Passive Trunk Orthosis: A Pilot Study on Able-Bodied Subjects,” Sensors, vol. 21, no. 24, p. 8366, Dec. 2021, doi: 10.3390/s21248366.
[22] M. Spiteri and S. N. Chang Rundgren, “Literature Review on the Factors Affecting Primary Teachers’ Use of Digital Technology,” Technol. Knowl. Learn., vol. 25, no. 1, 2020, doi: 10.1007/s10758-018-9376-x.
[23] I. K. A. Enriko, F. N. Gustiyana, and G. C. Giri, “LoRA Gateway Coverage and Capacity Analysis for Supporting Monitoring Passive Infrastructure Fiber Optic in Urban Area,” Elinvo (Electronics, Informatics, Vocat. Educ., vol. 8, no. 2, pp. 164–170, 2023, doi: 10.21831/elinvo.v8i2.59280.
[24] E. Madona, Yulastri, A. Nasution, and Prayogi, “Implementation of Lora for Controlling and Monitoring Broiler Cage Temperature,” J. Phys. Conf. Ser., vol. 2406, no. 1, p. 012009, Dec. 2022, doi: 10.1088/1742-6596/2406/1/012009.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The article published in ELINVO became ELINVO's right in publication.
This work by ELINVO is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



