Integrating Psychological Stress Indicators with Academic Data for Student Dropout Prediction: A Decision Tree and Expert System Approach

Authors

DOI:

https://doi.org/10.21831/elinvo.v10i2.89031

Keywords:

Student dropout, decision tree, forward chaining, stress level, psychological data integration

Abstract

Student attrition remains a major problem in higher education. Although academic variables are well-established moderators, psychological wellness, especially stress, is an important but often ignored moderator. The purpose of this study is to construct prediction models for students at risk of dropping out by combining academic and psychological information. One major challenge in this field is the class imbalance of student records, which results in a significant drop in the dropout rate compared to the general population. Therefore, in this study, we employ a Decision Tree algorithm and use a Forward Chaining inference engine along with the Synthetic Minority Over-sampling Technique (SMOTE) to solve it. We employed a data set of 122 students at one institution, with psychological stress scores generated from a standardised questionnaire according to well-known symptom domains. The accuracy for the model with only a Decision Tree was 95.83%. For the stress score, integration with the FC-based attribute increased performance to 96.67%; however, this model exhibited only marginal improvement over the final model due to its very low accuracy when compared to that of SMOTE. This ensemble model performed the best with an accuracy of 97.50% and an AUC of 96.35%. This progression demonstrates that even though the introduction of psychological information is beneficial, an approach to balance data and ensure a robust prediction system is required. This article is a proof-of-concept analysis which creates an opportunity for universities to establish proactive, early-warning-driven models; yet there is a requirement for future validation studies on larger and more diversified samples.

References

[1] A. S. Munna and M. A. Kalam, “Teaching and learning process to enhance teaching effectiveness: literature review,” Int. J. Humanit. Innov. IJHI, vol. 4, no. 1, pp. 1–4, 2021, doi: 10.33750/ijhi.v4i1.102.

[2] E. Mulyani, E. Ismantohadi, and Koriah, “Sistem prediksi potensi drop out mahasiswa menggunakan rule based system pada jurusan teknik informatika politeknk negeri indramayu,” Infromatika Fak. Sains Dan Teknol., vol. 8, no. 1, pp. 19–25, 2020.

[3] A. P. Widyassari, J. R. Carreon, R. Wahyusari, S. Tinggi, and T. Roggolawe, “Systematic review of expert system for detecting mental health,” J. Tek. Inform. JUTIF, vol. 5, no. 6, pp. 1737–1746, 2024, doi: https://doi.org/10.52436/1.jutif.2024.5.6.4089.

[4] B. N. Böke, D. J. Mills, J. Mettler, and N. L. Heath, “Stress and coping patterns of university students,” J. Coll. Stud. Dev., vol. 60, no. 1, pp. 85–103, 2019, doi: 10.1353/csd.2019.0005.

[5] R. Eleftheriades, C. Fiala, and M. D. Pasic, “The challenges and mental health issues of academic trainees,” F1000Research, vol. 9, no. May, pp. 1–26, 2020, doi: 10.12688/f1000research.21066.1.

[6] T. H. Hasibuan and D. Mahdiana, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Algoritma C4.5 Pada Uin Syarif Hidayatullah Jakarta,” Skanika, vol. 6, no. 1, pp. 61–74, 2023, doi: 10.36080/skanika.v6i1.2976.

[7] M. T. Anwar, L. Heriyanto, and F. Fanini, “Model Prediksi Dropout Mahasiswa Menggunakan Teknik Data Mining,” J. Inform. Upgris, vol. 7, no. 1, pp. 56–60, 2021, doi: 10.26877/jiu.v7i1.8023.

[8] V. A. Nurislamiaty and A. F. Rozi, “Prediksi Kelulusan Mahasiswa Fakultas Teknologi Informasi Umby Menggunakan Metode Decision Tree Penerapan Algoritma C4. 5,” Inf. Syst. Artif. Intell., vol. 1, no. 2, pp. 85–93, 2021.

[9] D. Irmayanti, Y. Muhyidin, and D. A. Nurjaman, “Prediksi Mahasiswa Berpotensi Drop Out Dengan Metode Iteratif Dichotomiser 3 (ID3),” J. Teknol. Inf., vol. 5, no. 2, pp. 103–113, 2021, doi: 10.36294/jurti.v5i2.2054.

[10] U. S. Aesyi, A. R. Lahitani, T. W. Diwangkara, and R. T. Kurniawan, “Deteksi Dini Mahasiswa Drop Out Menggunakan C5.0,” JISKA J. Inform. Sunan Kalijaga, vol. 6, no. 2, pp. 113–119, 2021, doi: 10.14421/jiska.2021.6.2.113-119.

[11] M. Sulehu, Wisda, F. Wanita, and Markani, “Optimasi Prediksi Kelulusan Mahasiswa Menggunakan Random Forest untuk Meningkatkan Tingkat Retensi,” J. Minfo Polgan, vol. 13, no. 2, pp. 2364–2374, 2025, doi: https://doi.org/10.33395/jmp.v13i2.14472.

[12] Y. L. Fatma and N. Rochmawati, “Prediksi Siswa Putus Sekolah Menggunakan Algoritma Decision Tree C4.5,” JINACS J. Inform. Comput. Sci., vol. 05, no. 4, pp. 486–493, 2024.

[13] B. N. Aisyah and I. Gunawan, “Penerapan Machine Learning Untuk Memprediksi Kelulusan Mahaiswa Menggunakan Algoritma Decision Tree Application of Machine Learning to Predict Student Graduation Using the Decision,” in SENDIKO: Seminar Nasional Hasil penelitian & Pengabdian Masyarakat Bidang Ilmu Komputer, 2024, pp. 1–6.

[14] B. Sekeroglu, R. Abiyev, A. Ilhan, M. Arslan, and J. B. Idoko, “Systematic literature review on machine learning and student performance prediction: Critical gaps and possible remedies,” Appl. Sci. Switz., vol. 11, no. 22, 2021, doi: 10.3390/app112210907.

[15] A. M. Rabelo and L. E. Zárate, “A Model for Predicting Dropout of Higher Education Students,” Data Sci. Manag., vol. 8, no. July 2024, pp. 72–85, 2024, doi: 10.1016/j.dsm.2024.07.001.

[16] M. Bansal, A. Goyal, and A. Choudhary, “A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning,” Decis. Anal. J., vol. 3, no. November 2021, p. 100071, 2022, doi: 10.1016/j.dajour.2022.100071.

[17] N. Nahar and F. Ara, “Liver Disease Prediction by Using Different Decision Tree Techniques,” Int. J. Data Min. Knowl. Manag. Process, vol. 8, no. 2, pp. 01–09, 2018, doi: 10.5121/ijdkp.2018.8201.

[18] D. Sinaga, E. J. Solaiman, and F. J. Kaunang, “Penerapan Algoritma Decision Tree C4.5 Untuk Klasifikasi Mahasiswa Berpotensi Drop out Di Universitas Advent Indonesia,” TeIKa, vol. 11, no. 2, pp. 167–173, 2021, doi: 10.36342/teika.v11i2.2613.

[19] Qurrotul Aini, H. A. Pratama, and R. H. Kusumaningtyas, “Potential Drop Out Students: Utilizing C4.5 Algorithm and Naive Bayes Classification,” in 2024 12th International Conference on Cyber and IT Service Management (CITSM), Batam, Indonesia: IEEE, 2024. doi: 10.1109/CITSM64103.2024.10775424.

[20] D. W. Puteri, P. W. Buana, and I. M. Sukarsa, “Komparasi Metode Decision Tree dan Deep Learning dalam Meramalkan Jumlah Mahasiswa Drop Out Berdasarkan Nilai Akademik,” J. Internet Softw. Eng., vol. 1, no. 2, p. 12, 2024, doi: 10.47134/pjise.v1i2.2327.

[21] E. W. Sholeha, B. Sabella, W. Kusrini, and S. Komalasari, “Sistem Pakar Penyakit Kesehatan Mental Remaja Menggunakan Metode Forward Chaining Dan Certainty Factor,” vol. 10, no. 01, 2023, doi: http://dx.doi.org/10.20527/klik.v10i1.523.

[22] Y. S. Purnamasari, S. Mujiyono, and F. V. Ismiriyam, “Expert System for The Diagnosis of Depression in Students Using Certainty Factor Method: A Case Study of Ngudi Waluyo University,” J. Inf. Syst. Inform., vol. 7, no. 1, pp. 909–923, Mar. 2025, doi: 10.51519/journalisi.v7i1.950.

[23] Suliati, S. Achmadi, and D. Rudhistiar, “Penerapan Sistem Pakar Untuk Deteksi Dini Mental Illness Dengan Menggunakan Metode Forwad Chaining Dan Certainty,” JATI J. Mhs. Tek. Inform., vol. 6, no. 2, pp. 1087–1095, 2022.

[24] M. F. U. A. Siddieq, “Sistem Pakar Diagnosa Depresi Mahasiswa Tingkat Akhir Dengan Metode Certainty Factor Dan Forward Chaining,” Kohesi J. Multidisiplin Saintek, vol. 3, no. 7, pp. 1–10, 2024.

[25] I. F. Hanif and A. Rachman, “Sistem Deteksi Ketegangan Mental Mahasiswa Dalam Penyusunan Skripsi Menggunakan Metode Forward Chaining,” Pseudocode, vol. 9, no. 2, pp. 73–79, Oct. 2022, doi: 10.33369/pseudocode.9.2.73-79.

[26] N. Nurholis, F. Fauziah, and N. D. Natashia, “Perpaduan Metode Certainty Factor dan Forward Chaining untuk Menentukan Tingkat Stres Mahasiswa Tingkat Akhir Berbasis Android,” J. JTIK J. Teknol. Inf. Dan Komun., vol. 5, no. 3, pp. 267–276, Sept. 2021, doi: 10.35870/jtik.v5i3.218.

[27] P. Rahma, Z. Fitri, and W. Fuadi, “Development of an Expert System for Identifying Students’ Learning Styles Using the Euclidean Probability Method,” ITEJ Inf. Technol. Eng. J., vol. 10, pp. 65–77, June 2025, doi: 10.24235/itej.v10i1.214.

[28] S. M. Basha and D. S. Rajput, “Chapter 9 - Survey on Evaluating the Performance of Machine Learning Algorithms: Past Contributions and Future Roadmap,” in Deep Learning and Parallel Computing Environment for Bioengineering Systems, A. K. Sangaiah, Ed., Academic Press, 2019, pp. 153–164. doi: https://doi.org/10.1016/B978-0-12-816718-2.00016-6.

[29] Y. T. Setia, D. Margaretha, and Y. D. Doni, “Pengaruh Stres Akademik terhadap Motivasi Belajar Mahasiswa Bimbingan dan Konseling FKIP-UNWIRA Angkatan 2022,” J. Pendidik. Indones. Teori Penelit. Dan Inov., vol. 5, no. 2, pp. 51–55, 2025, doi: 10.59818/jpi.v5i2.1276.

[30] J. Zhang, J. Meng, and X. Wen, “The relationship between stress and academic burnout in college students: evidence from longitudinal data on indirect effects,” Front. Psychol., vol. 16, p. 1517920, May 2025, doi: 10.3389/fpsyg.2025.1517920.

Downloads

Published

2025-12-20

How to Cite

Gunawan, I., & Widyassari, A. P. (2025). Integrating Psychological Stress Indicators with Academic Data for Student Dropout Prediction: A Decision Tree and Expert System Approach . Elinvo (Electronics, Informatics, and Vocational Education), 10(2), 131–146. https://doi.org/10.21831/elinvo.v10i2.89031

Citation Check