Optimizing "Open Data Jawa Tengah" through Technology Acceptance Model (TAM)

Yasykur Hisyam Muaafii, Universitas Negeri Yogyakarta, Indonesia
Priyanto Priyanto, Universitas Negeri Yogyakarta, Indonesia


The Central Java Provincial Government has implemented the “Open Data Jateng” system since 2019 for public services. Open Data is part of the application of big data, and the system does not yet have evidence to meet data needs. So, an explanatory method of research was conducted using a prediction study. The research variables are based on the development of the Technology Acceptance Model (TAM) theory and the 3Q model theory. 130 respondents from the ex-Karesidenan of Semarang City filled out 21 statements, then tested through Partial Least Square - Structural Equation Modeling (PLS-SEM). The result is that there is the highest relationship in the TAM variable, namely: the influence of the perceived usefulness variable on the behavioral intention to use variable is 42.5%, with the predictive power of increasing the two variables to 75.2% if there is treatment/policy. The relationship between TAM variables and the 3Q model was found, such as the effect between the information quality variable and perceived usefulness was 13.3%, which has a low level of influence. Although low, the predictive power is also high at 65.4% if there is a treatment or policy that supports the information quality variable. The study concluded that the optimization of Open Data Jateng can be through policy support in order to improve the quality of information.


Open data; TAM; PLS-SEM

Full Text:



J. Mazzei, M., & Noble, D. (2020). Big Data and Strategy: Theoretical Foundations and New Opportunities. In Strategy and Behaviors in the Digital Economy. IntechOpen. https://doi.org/10.5772/intechopen.84819

M. Fadlan and O. Obert, “Pemanfaatan Open Government Data Dalam Meningkatkan Kewaspadaan Terhadap Kriminalitas,” Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, vol. 13, no. 2, p. 105, Feb. 2019, doi: 10.30872/jim.v13i2.1316.

M. Lnenicka and J. Komarkova, “Developing a government enterprise architecture framework to support the requirements of big and open linked data with the use of cloud computing,” Int J Inf Manage, vol. 46, pp. 124–141, Jun. 2019, doi: 10.1016/J.IJINFOMGT.2018.12.003.

P. Colpaert, P. Mechant, E. Mannens, and R. Van De Walle, “The 5 stars of open data portals,” 2013. [Online]. Available: https://www.researchgate.net/publication/265140938

A. Abella, M. Ortiz-De-urbina-criado, and C. De-Pablos-heredero, “Criteria for the identification of ineffective open data portals: pretender open data portals,” Profesional de la Informacion, vol. 31, no. 1, 2022, doi: 10.3145/epi.2022.ene.11.

S. Umaroh and M. M. Barmawi, “Delone and mclean model of academic information system success,” EEA - Electrotehnica, Electronica, Automatica, vol. 69, no. 2, pp. 92–101, 2021, doi: 10.46904/eea.

E. Ruijer, S. Grimmelikhuijsen, J. van den Berg, and A. Meijer, “Open data work: understanding open data usage from a practice lens,” International Review of Administrative Sciences, vol. 86, no. 1, 2020, doi: 10.1177/0020852317753068.

E. Ruijer, S. Grimmelikhuijsen, and A. Meijer, “Open data for democracy: Developing a theoretical framework for open data use,” Gov Inf Q, vol. 34, no. 1, 2017, doi: 10.1016/j.giq.2017.01.001.

D. Gunawan and A. Amalia, “The Implementation of open data in Indonesia,” in Proceedings of 2016 International Conference on Data and Software Engineering, ICoDSE 2016, 2017. doi: 10.1109/ICODSE.2016.7936164.

A. Manshur, “Satu Data, Big Data dan Analitika Data: Urgensi Pelembagaan, Pembiasaan dan Pembudayaan,” Bappenas Working Papers, vol. 4, no. 1, pp. 30–46, Mar. 2021, doi: 10.47266/bwp.v4i1.82.

M. Arief and A. N. Muthmainnah, “Data Journalist : One Data Indonesia (SDI) Weak of Data,” Jurnal Spektrum Komunikasi, vol. 9, no. 2, 2022, doi: 10.37826/spektrum.v9i2.220.

D. W. Jacob, M. F. M. Fudzee, M. A. Salamat, and N. H. A. Rahman, “Analyzing the barrier to open government data (OGD) in Indonesia,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 1.3S1, 2019, doi: 10.30534/ijatcse/2019/2681.32019.

A. N. Soegiono, “Investigating Digital (Dis)engagement of Open Government: Case Study of One Data Indonesia,” JKAP (Jurnal Kebijakan dan Administrasi Publik), vol. 22, no. 1, 2018, doi: 10.22146/jkap.31848.

W. H. DeLone and E. R. McLean, “The DeLone and McLean model of information systems success: A ten-year update,” in Journal of Management Information Systems, M.E. Sharpe Inc., 2003, pp. 9–30. doi: 10.1080/07421222.2003.11045748.

N. Marangunić and A. Granić, “Technology acceptance model: a literature review from 1986 to 2013,” Univers Access Inf Soc, vol. 14, no. 1, 2015, doi: 10.1007/s10209-014-0348-1.

S. Rizky Wicaksono, “Teori Dasar Technology Acceptance Model,” Dec. 2022, doi: 10.5281/zenodo.7754254.

R. Máchová and M. Lněnička, “Evaluating the quality of open data portals on the national level,” Journal of Theoretical and Applied Electronic Commerce Research, vol. 12, no. 1, pp. 21–41, Jan. 2017, doi: 10.4067/S0718-18762017000100003.

A. González-Vidal, A. P. Ramallo-González, and A. F. Skarmeta, “Intrinsic & extrinsic quality of data for open data repositories,” ICT Express, vol. 8, no. 3, pp. 328–333, Sep. 2022, doi: 10.1016/J.ICTE.2022.06.001.

B. Al-Ateeq, N. Sawan, K. Al-Hajaya, M. Altarawneh, and A. Al-Makhadmeh, “Big Data Analytics In Auditing & The Consequences For Audit Quality: Using TAM,” Corporate Governance and Organizational Behavior Review, vol. 6, no. 1, pp. 64–78, 2022, doi: 10.22495/cgobrv6i1p5.

H. Jo, “Success Factor of Smart Factory: Moderating Role of Commitment to Learning,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 736–743. doi: 10.1016/j.procs.2022.08.089.

S. Petter, W. Delone, and E. R. McLean, “Information systems success: The quest for the independent variables,” Journal of Management Information Systems, vol. 29, no. 4, pp. 7–62, Apr. 2013, doi: 10.2753/MIS0742-1222290401.

N. Gorla, T. M. Somers, and B. Wong, “Organizational impact of system quality, information quality, and service quality,” Journal of Strategic Information Systems, vol. 19, no. 3, pp. 207–228, Sep. 2010, doi: 10.1016/j.jsis.2010.05.001.

G. G. Gable, D. Sedera, and T. Chan, “Re-conceptualizing information system success: The IS-impact measurement model,” J Assoc Inf Syst, vol. 9, no. 7, pp. 377–408, 2008, doi: 10.17705/1jais.00164.

A. F. AbdelKader and M. H. Sayed, “Evaluation of the Egyptian knowledge bank using the information systems success model,” Journal of Academic Librarianship, vol. 48, no. 2, Mar. 2022, doi: 10.1016/j.acalib.2022.102506.

I. Y. Alyoussef, “Acceptance of e-learning in higher education: The role of task-technology fit with the information systems success model,” Heliyon, vol. 9, no. 3, Mar. 2023, doi: 10.1016/j.heliyon.2023.e13751.

S. Krisdina, O. D. Nurhayati, and D. M. K. Nugraheni, “Hybrid Model Based on Technology Acceptance Model (TAM) & Information System Success Model (ISSM) in Analyzing the Use of E-Health,” in E3S Web of Conferences, EDP Sciences, Oct. 2022. doi: 10.1051/e3sconf/202235905003.

M. K. Al-Kofahi, H. Hassan, R. Mohamad, T. P. Intan, and M. Com, “Information Systems Success Model: A Review of Literature,” 2020. [Online]. Available: www.ijicc.net

A. Fauzi et al., Metodologi Penelitian. 2022. Accessed: Nov. 14, 2023. [Online]. Available: https://repository.bsi.ac.id/

J. F. Hair, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) Second Edition. 2014.

J. F. Hair and G. Tomass M Hultt, Book of Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. 2021. Accessed: Nov. 14, 2023. [Online]. Available: https://www.springer.com/gp

Satishprakash Shukla, “Concept of Population & Sample,” 2020. [Online]. Available: https://www.researchgate.net/publication/346426707

D. D. Budiastuti, Validasi dan Reliabilitas Penelitian. 2018.

S. E. Statistk and S. Yamin, Book of Olah Data Statistik: SMART-PLS-3 & SMART-PLS-4. 2023. [Online]. Available: www.dewanggapublishing.com

H. MSi, J. Ustiawaty, and D. Juliana Sukmana, Buku Metode Penelitian Kualitatif & Kuantitatif. 2020. [Online]. Available: https://www.researchgate.net/publication/340021548

J. F. Hair, G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, and S. Ray, Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. in Classroom Companion: Business. Cham: Springer International Publishing, 2022. doi: 10.1007/978-3-030-80519-7.

J. F. Hair, J. J. Risher, M. Sarstedt, and C. M. Ringle, “When to use and how to report the results of PLS-SEM,” European Business Review, vol. 31, no. 1, pp. 2–24, Jan. 2019, doi: 10.1108/EBR-11-2018-0203.

N. Zeng, Y. Liu, P. Gong, M. Hertogh, and M. König, “Do right PLS and do PLS right: A critical review of the application of PLS-SEM in construction management research,” Frontiers of Engineering Management, vol. 8, no. 3, pp. 356–369, Sep. 2021, doi: 10.1007/s42524-021-0153-5.

M. Wati Putri, N. Mutiah, and J. H. Sistem Informasi Fakultas MIPA Universitas Tanjungpura Jalan Hadari Nawawi, “Pengukuran Efektivitas Open Data System Menggunakan Model DeLone & McLean,” 2021. [Online]. Available: https://data.pontianakkota.go.id/.

A. Jeyaraj, “DeLone & McLean models of information system success: Critical meta-review and research directions,” Int J Inf Manage, vol. 54, Oct. 2020, doi: 10.1016/j.ijinfomgt.2020.102139.

E. Bayonne, J. A. Marin-Garcia, and R. Alfalla-Luque, “Partial least squares (PLS) in operations management research: Insights from a systematic literature review,” Journal of Industrial Engineering and Management, vol. 13, no. 3. Universitat Politecnica de Catalunya, pp. 565–597, 2020. doi: 10.3926/JIEM.3416.

DOI: https://doi.org/10.21831/elinvo.v9i1.67506


  • There are currently no refbacks.

Copyright (c) 2024 Elinvo (Electronics, Informatics, and Vocational Education)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Our Journal indexed by:

ISSN 2477-2399 (online) || ISSN 2580-6424 (print)

View My Stats

Flag Counter