Design and Implementation of Real-Time Health Vital Sign Monitoring Device with Wireless Sensor-based on Arduino Mega
DOI:
https://doi.org/10.21831/elinvo.v6i1.43799Abstract
References
H. Abuella and S. Ekin, "Non-Contact Vital Signs Monitoring through Visible Light Sensing," IEEE Sens. J., vol. 20, no. 7, pp. 3859–3870, 2020, doi: 10.1109/JSEN.2019.2960194.
Z. Alaseel and D. Debnath, "Vital Signs Monitoring System in Cloud Environment," in IEEE International Conference on Electro Information Technology, 2018, pp. 73–78, doi: 10.1109/EIT.2018.8500304.
S. P. McGrath, I. M. Perreard, M. D. Garland, K. A. Converse, and T. A. Mackenzie, "Improving Patient Safety and Clinician Workflow in the General Care Setting With Enhanced Surveillance Monitoring," IEEE J. Biomed. Heal. Informatics, vol. 23, no. 2, pp. 857–866, 2019, doi: 10.1109/JBHI.2018.2834863.
X. Wang, C. Yang, and S. Mao, "PhaseBeat: Exploiting CSI Phase Data for Vital Sign Monitoring with Commodity WiFi Devices," in International Conference on Distributed Computing Systems, 2017, pp. 1230–1239, doi: 10.1109/ICDCS.2017.206.
N. Q. Al-Naggar, H. M. Al-Hammadi, A. M. Al-Fusail, and Z. A. Al-Shaebi, "Design of a Remote Real-Time Monitoring System for Multiple Physiological Parameters Based on Smartphone," J. Healthc. Eng., vol. 2019, 2019, doi: 10.1155/2019/5674673.
C. Zhan, C. K. Tse, Y. Gao, and T. Hao, "Comparative Study of COVID-19 Pandemic Progressions in 175 Regions in Australia, Canada, Italy, Japan, Spain, U.K. And USA Using a Novel Model That Considers Testing Capacity and Deficiency in Confirming Infected Cases," IEEE J. Biomed. Heal. Informatics, vol. 25, no. 8, pp. 2836–2847, 2021, doi: 10.1109/JBHI.2021.3089577.
M. Berquedich, A. Berquedich, O. Kamach, M. Masmoudi, A. Chebbak, and L. Deshayes, "Developing a Mobile COVID-19 Prototype Management Application Integrated with an Electronic Health Record for Effective Management in Hospitals," IEEE Eng. Manag. Rev., vol. 48, no. 4, pp. 55–64, 2020, doi: 10.1109/EMR.2020.3032943.
W. Tan and J. Liu, "Application of Face Recognition in Tracing COVID-19 Fever Patients and Close Contacts," in IEEE International Conference on Machine Learning and Applications (ICMLA), 2020, pp. 1112–1116, doi: 10.1109/ICMLA51294.2020.00179.
A. Zafia, "Prototype Alat Monitoring Vital Sign Pasien Rawat Inap Menggunakan Wireless Sensor Sebagai Upaya Physical Distancing menghadapi Covid-19," J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 2, no. 2, pp. 61–68, 2020, doi: 10.20895/inista.v2i2.126.
M. Shu, M. Tang, M. Yang, and N. Wei, "The vital signs real-time monitoring system based on Internet of things," in International Conference on Information Science and Control Engineering (ICISCE), 2017, pp. 747–751, doi: 10.1109/ICISCE.2017.160.
D. Naufal, A. W. Setiawan, and T. L. E. Rajab, "Blood Pressure Measuring Device Based on Korotkoff Sound's Tapping Period and Frequency Detection," in International Seminar on Intelligent Technology and Its Application: Humanification of Reliable Intelligent Systems (ISITIA), 2020, pp. 158–163, doi: 10.1109/ISITIA49792.2020.9163700.
L. Goswami and P. Agrawal, "IoT based Diagnosing of Fault Detection in Power Line Transmission through GOOGLE Firebase Database," in International Conference on Trends in Electronics and Informatics (ICOEI), 2020, pp. 415–420.
M. P. Jati, G. Basuki, and H. Hasnira, "Kendali Fuzzy Logic - Interleaved Boost Converter pada Aplikasi Motor DC," Elinvo (Electronics, Informatics, Vocat. Educ., vol. 5, no. November, pp. 1–9, 2021, doi: 10.21831/elinvo.v5i2.40698.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
The article published in ELINVO became ELINVO's right in publication.
This work by ELINVO is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.