Aplikasi variasi jumlah pelat elektroda Al-Fe pada pengurangan mikroplastik dalam limbah masker secara elektrokoagulasi

Siti Marwati Marwati, Departemen Pendidikan Kimia FMIPA UNY, Indonesia
Isana Supiah Yosephine Louise, Departemen Pendidikan Kimia FMIPA UNY, Indonesia
Regina Tutik Padmaningrum, Departemen Pendidikan Kimia FMIPA UNY, Indonesia
Aprilia Rahmawati, Departemen Pendidikan Kimia FMIPA UNY, Indonesia
Zahra Hamida, Departemen Pendidikan Kimia FMIPA UNY, Indonesia
Ardhita Julia, Departemen Pendidikan Kimia FMIPA UNY, Indonesia

Abstract


Penelitian ini bertujuan untuk mengetahui pengaruh jumlah pelat elektroda Fe-Al pada pengurangan mikroplastik dalam limbah masker secara elektrokoagulasi. Sampel penelitian adalah limbah masker medis. Masker dipotong-potong dengan ukuran 1-5 mm. Potongan masker tersebut direndam dalam aquades selama 7 hari. Cairan yang mengandung mikroplastik dielektrokoagulasi dengan kombinasi pelat elektroda (Al-Fe), (Al-Fe-Al), dan (Al-Fe-Al-Fe) selama 4 jam, arus listrik 2,5 A dan pH 6,0. Serat mikroplastik sebelum dan sesudah elektrokoagulasi diamati dengan mikroskop perbesaran 40 kali. Karakterisasi mikroplastik dilakukan dengan menggunakan FTIR (Fourier Transform Infra Red) dan SEM (Scanning Electron Microscope). Hasil penelitian menunjukkan bahwa efektifitas pengurangan mikroplastik yang dielektrokoagulasi menggunakan kombinasi pelat elektroda (Al-Fe), (Fe-Al-Fe), (Al-Fe-Al-Fe) berturut-turut adalah 82,5; 87,5; dan 90,0%. Semakin banyak jumlah pelat pada elektrokoagulasi mikroplastik dapat meningkatkan efektifitas pengurangan mikroplastik. Gugus fungsi yang terkandung dalam masker sebelum dan sesudah elektrokoagulasi mempunyai kemiripan dengan flok yang dihasilkan. Gumpalan Flok hasil elektrokoagulasi berbentuk variatif dan terdapat serat.
 
Application of variation in Al-Fe electrode plates to reduce microplastics
in masks waste by electrocoagulation

This study investigates how the number of Fe-Al electrode plates affects electrocoagu-lation’s effectiveness in decreasing mask waste microplastics. The sample in this study was medical mask waste. The mask is chipped into 1-5 mm pieces. The pieces of the mask are soaked in distilled water for seven days. Liquid-containing microplastics were electrocoagulated with a combination of Fe-Al, Fe-Al-Fe, and Fe-Al-Fe-Al electrode plates for 4 hours at an electric current of 2.5 A and a pH of 7.0. Microplastic fibers before and after electrocoagulation were observed with a forty-fold magnification microscope. Microplastic characterization was carried out using FTIR (Fourier Transform Infra Red) and SEM (Scanning Electron Microscope). The results showed that the effectiveness of electrocoagulation microplastics using a combination of electrode plates (Fe-Al), (Fe-Al-Fe), and (Fe-Al-Fe-Al) was 82.5, 85.0, and 87.5%, respectively. The efficiency of microplastic reduction can be improved by using more plates in microplastic electrocoagulation. The functional groups contained in the masks before and after electrocoagulation are similar to the flocs produced. Floc clumps resulting from electrocoagulation are varied in shape and contain fibers.


Keywords


elektroda, elektrokoagulasi, masker, mikroplastik, pelat Fe-Al

Full Text:

PDF

References


Akarsu, C., Kumbur, H., & Kideys, A. E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Sci. Technol., 84, 1648-1662.

Aragaw, T. A. (2020). Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario, Mar. Pollut. Bull., 159, 1-7.

Chen, X., Chen, X., Liu, Q., Zhao, Q., Xiong, X., & Wu, C. (2021). Used disposable face masks are significant sources of microplastics to environment. Environmental Pollution, 285, 117485.

Dissanayake, J., Torres-Quiroz, C., Mahato, J., & Park, J. (2021). Facemasks: A looming microplastic crisis, Int. J. Environ. Res. Public Health, 18.

Du, H., Xie, Y., & Wang, J. (2021). Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives, J. Hazard. Mater., 418, 126377.

Fachrul, M. F., & Rinanti, A. (2018). Bioremediasi pencemar mikroplastik di ekosistim perairan menggunakan bakteri indigenous, Pros. Semin. Nas. Kota Berkelanjutan, 302-312.

Khoironi, A., Hadiyanto, H., Anggoro, S., & Sudarno, S. (2020). Evaluation of polypropylene plastic degradation and microplastic identification in sediments at Tambak Lorok coastal area, Semarang, Indonesia. Mar. Pollut. Bull., 151, 1-10.

Kim, K. T., & Park, S. (2021). Enhancing microplastics removal from wastewater using electro-coagulation and granule-activated carbon with thermal regeneration, Processes, 9, 1-15.

Liu, M., Lu, S., Chen, Y., Cao, C., Bigalke, M., & He, D., 2020, Analytical methods for microplastics in environments: Current advances and challenges. Microplastics in terrestrial environments: Emerging contaminants and major challenges (pp. 3-24). Springer Science and Business Media Deutschland GmbH.

Miao, F., Liu, Y., Gao, M., Yu, X., Xiao, P., Wang, M., Wang, S., & Wang, X. (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. J. Hazard. Mater., 399, 123023.

Modirshahla, N., Behnajady, M.A., & Kooshaiian, S. (2007). Investigation of the effect of different electrode connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation. Dye. Pigment., 74, 249-257.

Moo, J. G. S., Veksha, A., Oh, W. Da, Giannis, A., Udayanga, W. D. C., Lin, S. X., Ge, L., & Lisak, G. (2019). Plastic derived carbon nanotubes for electrocatalytic oxygen reduction reaction: Effects of plastic feedstock and synthesis temperature, Electrochem. commun., 101, 11-18.

Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manage., 186, 24-41.

Murray, O. M., Bisset, J. M., Gilligan, P. J., Hannan, M. M., & Murray, J. G. (2020), Respirators and surgical facemasks for COVID-19: Implications for MRI. Clin. Radiol., 75, 405-407.

Rajala, K., Grönfors, O., Hesampour, M., & Mikola, A. (2020). Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res., 183, 11604.

Saliu, F., Veronelli, M., Raguso, C., Barana, D., Galli, P., & Lasagni, M. (2021). The release process of microfibers: From surgical face masks into the marine environment. Environ. Adv., 4, 100042.

Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., & Zeng, G. (2022). Efficient removal of microplastics from wastewater by an electrocoagulation process. Chem. Eng. J., 428, 1-13.

Sun, J., Yang, S., Zhou, G.J., Zhang, K., Lu, Y., Jin, Q., Lam, P. K. S., Leung, K. M. Y., & He, Y. (2021). Release of microplastics from discarded surgical masks and their adverse impacts on the Marine Copepod Tigriopus Japonicus. Environ. Sci. Technol. Lett., 8, 1065-1070.




DOI: https://doi.org/10.21831/jps.v1i2.67098

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Jurnal Penelitian Saintek

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 p-ISSN: 1412-3991 || e-ISSN: 2528-7036

Indexed by:

     

View My Stats