Aktivitas Antibakteri Nanokomposit TiO2/Cu dan TiO2/CuO terhadap Bakteri Bacillus cereus

Ine Nuhaeroh, Program Studi Kimia, Fakultas Sains dan Teknologi, Universitas Muhammadiyah Sukabumi, Indonesia
Devi Indah Anwar, Program Studi Kimia, Fakultas Sains dan Teknologi, Universitas Muhammadiyah Sukabumi, Indonesia
Lela Lailatul Khumaisah, Program Studi Kimia, Fakultas Sains dan Teknologi, Universitas Muhammadiyah Sukabumi, Indonesia

Abstract


Perkembangan nanoteknologi sebagai nanomaterial telah banyak dimanfaatkan salah satunya dalam bentuk nanokomposit. Nanokomposit banyak diaplikasikan sebagai fotokatalis untuk mendegradasi logam berat dan dewasa ini banyak penelitian mengenai manfaat nanokomposit sebagai bahan antibakteri. Penelitian ini bertujuan menganalisis aktivitas antibakteri dari nanokomposit TiO2/Cu dan TiO2/CuO hasil sintesis terhadap Bacillus cereus. Metode yang digunakan dalam melakukan sintesis nanokomposit adalah metode impregnasi basah. CuSO4 merupakan prekursor yang digunakan untuk mensinteis TiO2/Cu sedangkan TiO2/CuO menggunakan CuCl2. Suhu kalsinasi yang digunakan adalah 6000C. Material TiO2/Cu yang dihasilkan berukuran 29.01 nm sedangkan TiO2/CuO 27.64 nm. Uji karaterisasi X-Ray Diffraction (XRD) dilakukan untuk mengetahui pembentukkan nanokomposit TiO2/Cu dan TiO2/CuO. Puncak difraksi pada sudut 2θ TiO2 yaitu 25.33o, CuO 38.70, Cu 43.60 dan menandakkan nanokomposit berhasil terbentuk. Hasil pengujian aktivitas antibakteri terhadap Bacillus cereus dengan menggunakan metode difusi cakram menunjukkan TiO2/Cu memiliki zona hambat bakteri 8.10 mm dan TiO2/CuO 11.40 mm dan termasuk ke dalam antibakteri kuat sedangkan nanopartikel CuO merupakan antibakteri sedang dengan nilai sebesar 7.85 mm. Hasil ini menunjukkan nanokomposit memiliki daya hambat bakteri lebih tinggi dibandingkan nanopartikelnya.

Keywords


antibakteri; nanokomposit; TiO2; Cu; CuO

Full Text:

PDF

References


Prasetiyo, K. W. (2020). Aplikasi nanoteknologi dalam industri hasil hutan. Akar, 2(1), 15-26.

Hutabarat, L. G. (2017). Pembuatan nanokomposit poly (vinyl) alcohol–multiwalled carbon nanotubes sebagai film transparan konduktif metode casting. [Skripsi]. Universitas Sumatera Utara.

Rahmatullah, M., & Putro, S. S. (2016). Sintesa dan karakterisasi partikel nanokomposit ZnO-silika sebagai fotokatalis dengan metode sonikasi. Jurnal Institut Teknologi Surabaya,1(1), 19-28.

Hardian, A., Putri, R. H., Budiman, S., & Syarif, D. G. (2021). Sintesis keramik komposit ZrO2-ZnFe2O4 sebagai fotokatalis magnetik untuk degradasi metilen biru. Alchemy Jurnal Penelitian Kimia, 17(1), 43-53.

Fajriati, I., Mudasir, M., & Wahyuni, E. T. (2016). Sintesis nanokomposit TiO2-kitosan sebagai fotokatalis untuk fotodegradasi zat warna dan fotoreduksi logam berat [Disertasi]. Universitas Gadjah Mada.

Metryka, O., Wasilkowski, D., & Mrozik, A. (2021). Insight into the antibacterial activity of selected metal nanoparticles and alterations within the antioxidant defence system in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. International Journal of Molecular Sciences, 22(21), 118-125.

Ahmad, R., & Sardar, M. (2013). TiO2 nanoparticles as an antibacterial agent against E. coli. International Journal of Innovative Research Science, Engineering and Technology, 2(1), 3569-3574.

Rastina, R., Sudarwanto, M., & Wientarsih, I. (2015). Aktivitas antibakteri ekstrak etanol daun kari (Murraya koenigii) terhadap Staphylococcus aureus, Escherichia coli, dan Pseudomonas sp. Jurnal Kedokteran Hewan-Indonesian, 9(2), 96-107.

Ali, T., Ahmed, A., Alam, U., Uddin, I., Tripathi, P., & Muneer, M. (2018). Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Materials Chemistry and Physics, 212(1), 325-335.

Konieczny, J., & Rdzawski, Z. (2012). Antibacterial properties of copper and its alloys. Archives of Materials Science and Engineering, 56(2), 53-60.

Benli, B., & Yalın, C. (2017). The influence of silver and copper ions on the antibacterial activity and local electrical properties of single sepiolite fiber: A conductive atomic force microscopy (C-AFM) study. Applied Clay Science, 146(1), 449-456.

Kementerian ESDM RI. (2020). Booklet Tambang Tembaga 2020. Kementerian Energi dan Sumber Daya Mineral.

Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, 23(2), 382-398.

Isa, L. (2020). Synthesis and characterization of structural nanocomposite titanium dioxide copper-doped using the impregnation method. Spektra: Jurnal Fisika dan Aplikasinya, 5(1), 21-30.

Phiwdang, K., Suphankij, S., Mekprasart, W., & Pecharapa, W. (2013). Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia, 34(1), 740-745.

Manjunath, K., Souza, V. S., Ramakrishnappa, T., Nagaraju, G., Scholten, J. D., & Dupont, J. (2016). Heterojunction CuO-TiO2 nanocomposite synthesis for significant photocatalytic hydrogen production. Materials Research Express, 3(11), 1-9.

Korlis, B. D., & Manurung, H. (2015). Uji senyawa metabolit sekunder dan antibakteri ekstrak etanol buah Belangla (Litsea cubeba (Lour.) Pers.) terhadap bakteri Bacillus cereus dan Escherichia coli. In Prosiding Seminar Tugas Akhir FMIPA UNMUL (Vol. 2015, pp. 8-11).

Naqvi, Q. U. A., Kanwal, A., Qaseem, S., Naeem, M., Ali, S. R., Shaffique, M., & Maqbool, M. (2019). Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles. Journal of Biological Physics, 45(2), 147-159.

Mathew, S., Ganguly, P., Rhatigan, S., Kumaravel, V., Byrne, C., Hinder, S. J., & Pillai, S. C. (2018). Cu-doped TiO2: visible light assisted photocatalytic antimicrobial activity. Applied Sciences, 8(11), 2067-2075.

Desiati, R. D., Taspika, M., & Sugiarti, E. (2019). Effect of calcination temperature on the antibacterial activity of TiO2/Ag nanocomposite. Materials Research Express, 6(9), 1-9.

Borkow, G., & Gabbay, J. (2005). Copper as a biocidal tool. Current Medicinal Chemistry, 12(18), 2163-2175.

Lestari, M. W., Saputro, S. H., & Wahyuni, S. (2013). Sintesis dan karakterisasi nanokatalis CuO/TiO2 yang diaplikasikan pada proses degradasi limbah fenol. Indonesian Journal of Chemical Science, 2(2), 19-28.

Anandan, S., & Yang, S. (2007). Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies–an overview. Journal of Experimental Nanoscience, 2(1-2), 23-56.

Bungan, G. K., Aritonang, H. F., & Wuntu, A. D. (2021). Pembuatan nanokomposit kitosan/TiO2/Ag dan analisis aktivitasnya sebagai antibakteri. Chemistry Progress, 14(1), 187-196.

Theivasanthi, T., & Alagar, M. (2010). X-ray diffraction studies of copper nanopowder. Archive of Physics Research, 1(1), 112-117.

Garcia, C. V., Shin, G. H., & Kim, J. T. (2018). Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends in Food Science & Technology, 82(1), 21-31.

Sharma, D., Thakur, N., Vashistt, J., & Bisht, G. S. (2018). Antibacterial evaluation of cuprous oxide nanoparticles synthesized using leaf extract of Callistemon viminalis. Indian Journal of Pharmaceutical Education and Research, 52(1), 449-455.

Selvarani, M. (2018). Investigation of the synergistic antibacterial action of copper nanoparticles on certain antibiotics against human pathogens. International Journal of Pharmacy and Pharmaceutical Sciences, 10(1), 83-86.

Nisa, K. (2020). Analisis asam laktat, hidrogen peroksida, dan aktivitas antibakteri asam laktat transmisi air susu ibu [Skripsi]. Universitas Islam Negeri Maulana Malik Ibrahim.

Pericone, C. D., Park, S., Imlay, J. A., & Weiser, J. N. (2003). Factors contributing hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of toxic effects of Fenton reaction. Journal of Bacteriology, 185(23), 6815-6825.

Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., Keunen, E., Gielen, H., & Smeets, K. (2010). Cadmium stress: An oxidative challenge. Biometals, 23(5), 927-940.

Dwi, E. N. (2018). Hubungan antara pemberian aluminium dengan gambaran histopatologi hati tikus wistar jantan. [Skripsi]. Universitas Jember.




DOI: https://doi.org/10.21831/jsd.v11i2.53247

Refbacks



Copyright (c) 2022 Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta


Printed ISSN (p-ISSN): 2085-9872
Online ISSN (e-ISSN): 2443-1273

Indexer:
     

Creative Commons License
 
Jurnal Sains Dasar  is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
 
Free counters!
 
View My Stats