MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA

Karyati Karyati, Jurusan Pendidikan Matematika, FMIPA, Universitas Negeri Yogyakarta, Indonesia
Dhoriva Urwatul Wutsqa, Jurusan Pendidikan Matematika, FMIPA, Universitas Negeri Yogyakarta, Indonesia

Abstract


In this paper, will be discussed about the minimum norm in the pre- Hilbert Space, Hilbert space and its modification, and its application.  The results are: Let  X  be  a  pre-Hilbert space and  M is a sub space of X.   If an element  is fixed, then : . If there is   such that   , then   is unique. Let  H be a Hilbert space and M  be a closed sub space of  H . If   , then there is  a unique element   such that  ,  . Let X  be a Hilbert  space ,  M  be a closed  sub space of X . If  V =x+ M, for an element xX, then there is a unique element of    such that  ,    M.Key words : minimum norm,  pre-Hilbert space, Hilbert space , orthogonality

Full Text:

PDF


DOI: https://doi.org/10.21831/pg.v3i1.628

Refbacks

  • There are currently no refbacks.


PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:


Creative Commons License Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.

All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X

Visitor Number:

View Pythagoras Stats