Peningkatan daya tahan membran sel eritrosit dan jumlah sel eritrosit akibat latihan aerobik intensitas sedang
Abi Fajar Fathoni, Pendidikan Jasmani Kesehatan dan Rekreasi, Fakultas Ilmu Keolahragaan, Universitas Negeri Malang, Jl. Semarang No. 5, Lowokwaru, Malang, Jawa Timur, Indonesia., Indonesia
Endang Sri Wahjuni, Pendidikan Jasmani Kesehatan dan Rekreasi, Fakultas Ilmu Olahraga, Universitas Negeri Surabaya, Jl. Lidah Wetan, Lakarsantri, Surabaya, Jawa Timur, Indonesia, Indonesia
Abstract
Penelitian ini bertujuan untuk mengkaji dan menganalisa besarnya peningkatan daya tahan membran sel eritrosit dan jumlah sel eritrosit akibat latihan aerobik intensitas sedang. Penelitian ini merupakan penelitian eksperimen semu dengan pendekatan kuantitatif, serta menggunakan rancangan pretest and posttest design. Populasi dalam penelitian ini adalah mahasiswa jurusan PKO FIK UM, dengan tehnik sampling menggunakan purposive sampling, serta jumlah sampel sebanyak 20 orang. Variabel bebas dalam penelitian ini yaitu latihan aerobik intensitas sedang. Latihan dilakukan dengan frekuensi 3 kali perminggu, selama 8 minggu dan durasi latihan 30 menit. Variabel terikat yaitu: 1) daya tahan membran sel eritrosit, dan 2) Jumlah sel eritrosit. Data variabel terikat pretest dan posttest dikumpulkan dengan teknik memeriksa darah vena yang dilaksanakan di laboratorium klinik Diagnostik Bromo Malang. Analisis data menggunakan teknik Uji t paired sample t test dengan menggunakan α 0,05. Hasil analisis data penelitian menunjukkan bahwa Fragiltas Osmotik sebagai indikator variabel daya tahan membran sel eritrosit Pretest 0,46±0,02% dan postest 0,43±0,02 %, P-value 0,029 < α (0,05) sedangkan variabel jumlah sel eritrosit pretest 5,4580 ± 0,223 juta/uL dan postest 5,6230± 0,142 juta/uL,. P-value 0,021 < α (0,05). Hal ini dapat disimpulkan bahwa terdapat peningkatan yang signifikan daya tahan membran sel eritrosit dan jumlah sel eritrosit akibat Latihan aerobik intensitas sedang.
Increased endurance of erythrocyte cell membrane and erythrocyte cell number due to moderate intensity aerobic exercise
Abstract
This study aims to examine and analyze the magnitude of the increase in the endurance of the erythrocyte membrane and the number of erythrocyte cells due to moderate-intensity aerobic exercise. This research is a quasi-experimental research with a quantitative approach, and uses pretest and posttest design. The population in this study were students majoring in PKO FIK UM, with a sampling technique using purpusive sampling, and the number of samples was 20 people. The independent variable in this study was moderate intensity aerobic exercise. Exercises are carried out with a frequency of 3 times per week, for 8 weeks and the duration of the exercise is 30 minutes. The dependent variables are: 1) the durability of the erythrocyte cell membrane, and 2) the number of erythrocyte cells. The dependent variable data of pretest and posttest were collected by using the technique of examining venous blood which was carried out at the Bromo Diagnostic Clinic Malang. Data analysis used the paired sample t test technique using 0.05. The results of the analysis of research data showed that Osmotic Fragility as an indicator of the durability of the erythrocyte cell membrane. Pretest 0.46±0.02% and posttest 0.43±0.02%, P-value 0.029 < (0.05) while the variable amount erythrocyte cells pretest 5.4580 ± 0.223 million/uL and posttest 5.6230 ± 0.142 million/uL, P-value 0.021 < (0.05). It can be concluded that there is a significant increase in the endurance of the erythrocyte cell membrane and the number of erythrocytes due to moderate-intensity aerobic exercise.
Keywords
Full Text:
PDFReferences
Adi, S., & Fathoni, A. F. (2020). Blended learning analysis for sports schools in Indonesia. International Journal of Interactive Mobile Technologies, 14(12), 149–164. https://doi.org/10.3991/IJIM.V14I12.15595
Alfan, R., Sugiharto, S., & Andiana, O. (2021). Pengaruh Olahraga Intensitas High dan Intensitas Moderate Dengan Musik terhadap TNF-α. Sport Science and Health, 3(8), 642–655. https://doi.org/10.17977/um062v3i82021p642-655
Ammar, A., Trabelsi, K., Boukhris, O., Glenn, J. M., Bott, N., Masmoudi, L., Hakim, A., Chtourou, H., Driss, T., Hoekelmann, A., & Abed, K. El. (2020). Effects of aerobic-, anaerobic- and combined-based exercises on plasma oxidative stress biomarkers in healthy untrained young adults. International Journal of Environmental Research and Public Health, 17(7), 1–12. https://doi.org/10.3390/ijerph17072601
Chou, S. L., Huang, Y. C., Fu, T. C., Hsu, C. C., & Wang, J. S. (2016). Cycling exercise training alleviates hypoxia-impaired erythrocyte rheology. Medicine and Science in Sports and Exercise, 48(1), 57–65. https://doi.org/10.1249/MSS.0000000000000730
Costa, M., Sezgin-Bayindir, Z., Losada-Barreiro, S., Paiva-Martins, F., Saso, L., & Bravo-Díaz, C. (2021). Polyphenols as antioxidants for extending food shelf-life and in the prevention of health diseases: Encapsulation and interfacial phenomena. In Biomedicines (Vol. 9, Issue 12, pp. 1–38). https://doi.org/10.3390/biomedicines9121909
Dalmazzo, V., Ponce, Á., Delgado-Floody, P., Carrasco-Alarcón, V., & Martínez-Salazar, C. (2019). Effects of interval exercise in the improvement of glycemic control of obese adults with insulin resistance. Nutricion Hospitalaria, 36(3), 578–582. https://doi.org/10.20960/nh.2075
Elbassuoni, E. A., & Abdel Hafez, S. M. (2019). Impact of chronic exercise on counteracting chronic stress-induced functional and morphological pancreatic changes in male albino rats. Cell Stress and Chaperones, 24(3), 567–580. https://doi.org/10.1007/s12192-019-00988-y
Elejalde, E., Villarán, M. C., & Alonso, R. M. (2021). Grape polyphenols supplementation for exercise-induced oxidative stress. In Journal of the International Society of Sports Nutrition (Vol. 18, Issue 1, pp. 1–12). https://doi.org/10.1186/s12970-020-00395-0
Evans, L. W., & Omaye, S. T. (2017). Use of saliva biomarkers to monitor efficacy of vitamin C in exercise-induced oxidative stress. In Antioxidants (Vol. 6, Issue 1, pp. 1–21). https://doi.org/10.3390/antiox6010005
Greer, J. P., Arber, D. A., Glader, B. E., List, A. F., Means, R. T., Rodgers, G. M., Appelbaum, F. R., Dispenzieri, A., & Fehniger, T. A. (2018). Wintrobe’s clinical hematology: Fourteenth edition. In Wintrobe’s Clinical Hematology: Fourteenth Edition.
Guerreiro, L. F., Rocha, A. M., Martins, C. N., Ribeiro, J. P., Wally, C., Strieder, D. L., Carissimi, C. G., Oliveira, M. G., Pereira, A. A., Biondi, H. S., Monserrat, J. M., & Gonçalves, C. A. N. (2016). Oxidative status of the myocardium in response to different intensities of physical training. Physiological Research, 65(5), 737-749,. https://doi.org/10.33549/physiolres.933185
Hashida, R., Takano, Y., Matsuse, H., Kudo, M., Bekki, M., Omoto, M., Nago, T., Kawaguchi, T., Torimura, T., & Shiba, N. (2021). Electrical Stimulation of the Antagonist Muscle During Cycling Exercise Interval Training Improves Oxygen Uptake and Muscle Strength. Journal of Strength and Conditioning Research, 35(1), 111–117. https://doi.org/10.1519/JSC.0000000000002393
Hu, M., & Lin, W. (2012). Effects of exercise training on red blood cell production: Implications for anemia. In Acta Haematologica (Vol. 127, Issue 3, pp. 156–164). https://doi.org/10.1159/000335620
Kawamura, T., & Muraoka, I. (2018). Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. In Antioxidants (Vol. 7, Issue 9, pp. 1–19). https://doi.org/10.3390/antiox7090119
Kibble, J. D. (2021). Using the physiology of normal aging as a capstone integration exercise in a medical physiology course. Advances in Physiology Education, 45(2), 365–368. https://doi.org/10.1152/ADVAN.00020.2021
Kluwer, W. (2019). Wintrobe’s Clinical Hematology. 14th ed. Greer J, Editor. Philadelphia, PA:
Kruk, J., Aboul-Enein, B. H., & Duchnik, E. (2021). Exercise-induced oxidative stress and melatonin supplementation: current evidence. In Journal of Physiological Sciences (Vol. 71, Issue 1, pp. 1–19). https://doi.org/10.1186/s12576-021-00812-2
Kruk, J., Aboul-Enein, H. Y., Kładna, A., & Bowser, J. E. (2019). Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radical Research, 53(5), 497–521. https://doi.org/10.1080/10715762.2019.1612059
Lee, H. S., Kim, J. H., Oh, H. J., & Kim, J. H. (2021). Effects of interval exercise training on serum biochemistry and bone mineral density in dogs. Animals, 11(9), 1–13. https://doi.org/10.3390/ani11092528
lefever Joyce. (2008). Pedoman Pemeriksaan Laboratorium Dan Diagnostik. Buku Kedokteran EGC, 47(1).
Lepe, J. J., Alexeeva, A., Breuer, J. A., & Greenberg, M. L. (2021). Transforming University of California, Irvine medical physiology instruction into the pandemic era. FASEB BioAdvances, 3(3), 136–142. https://doi.org/10.1096/fba.2020-00082
Lin, M. L., Fu, T. C., Hsu, C. C., Huang, S. C., Lin, Y. T., & Wang, J. S. (2021). Cycling Exercise Training Enhances Platelet Mitochondrial Bioenergetics in Patients with Peripheral Arterial Disease: A Randomized Controlled Trial. Thrombosis and Haemostasis, 121(7), 900–912. https://doi.org/10.1055/s-0040-1722191
Listyarini, A. E. (2015). Latihan Senam Aerobik Untuk Meningkatkan Kebugaran Jasmani. Medikora, VIII(2). https://doi.org/10.21831/medikora.v0i2.4654
Liu, H., Hussain, S. A., Ali, D., Omar, S. Y. Al, Shaik, U., Alghamdi, H. A. H., & Maddu, N. (2020). Induced alteration of rat erythrocyte membrane with effect of pyrethroid based compounds. Saudi Journal of Biological Sciences, 27(12), 3669–3675. https://doi.org/10.1016/j.sjbs.2020.08.011
Nasrulloh, A. (2009). Pengaruh Latihan Aerobik Kombinasi Dengan Teknikterhadap Kemampuan Kardiorespirasi Efek Tekanan Udara terhadap Fisiologi Tubuh Atlet. MEDIKORA, 0(1). https://journal.uny.ac.id/index.php/medikora/article/view/4694
Nasrulloh, A. (2014). Program Physical Fitness dapat Meningkatkan Kesehatan Paru (VO2 max). KEMAS: Jurnal Kesehatan Masyarakat, 10(1), 1–6. https://doi.org/10.15294/kemas.v10i1.3063
Nasrulloh, A., Apriyanto, K. D., Yuniana, R., Dev, R. D. O., & Yudhistira, D. (2022). Developing Self Body Weight Training Methods to Improve Physical Fitness in the COVID-19 Era: Aiken Validity. Journal of Hunan University Natural Sciences, 49(6), 129–139. https://doi.org/10.55463/ISSN.1674-2974.49.6.14
Nasrulloh, A., Sumaryanto, S., Prasetyo, Y., Sulistiyono, S., & Yuniana, R. (2021). Comparison of Physical Condition Profiles of Elite and Non-Elite Youth Football Players. MEDIKORA, 20(1), 73–83. https://doi.org/10.21831/MEDIKORA.V20I1.39547
Noor, Z., Agustiningsih, D., Soesatyo, M. H. N. E., & Soejono, S. K. (2021). The effect of swimming exercise on thyroid function, spatial memory and anxiety in normal and propylthiouracil-induced hypothyroidism in wistar rats. Physiology and Pharmacology (Iran), 25(3), 231–241. https://doi.org/10.52547/PPJ.25.3.231
Nurhadi, F. I., Suherman, W. S., Prasetyo, Y., & Nasrulloh, A. (2022). Pengaruh latihan beban kombinasi dengan latihan aerobik terhadap berat badan dan persentase lemak tubuh pada remaja overweight The effect of weight training combined with aerobic exercise on body weight and body fat percentage in overweight adolescents. 18(2), 8–17.
Ore, A., & Akinloye, O. A. (2019). Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. In Medicina (Lithuania) (Vol. 55, Issue 2, pp. 1–13). https://doi.org/10.3390/medicina55020026
Pasini, E. M., Kirkegaard, M., Mortensen, P., Lutz, H. U., Thomas, A. W., & Mann, M. (2006). In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood, 108(3), 791–801. https://doi.org/10.1182/blood-2005-11-007799
Pornprasert, S., Tookjai, M., Punyamung, M., Pongpunyayuen, P., & Treesuwan, K. (2018). Proficiency testing program for hemoglobin E, A2 and F analysis in Thailand using lyophilized hemoglobin control materials. Clinical Chemistry and Laboratory Medicine, 56(4), 1–15. https://doi.org/10.1515/cclm-2017-0581
Putra, K. P., Al Ardha, M. A., Kinasih, A., & Aji, R. S. (2017). Korelasi perubahan nilai VO2max, eritrosit, hemoglobin dan hematokrit setelah latihan high intensity interval training. Jurnal Keolahragaan, 5(2), 1–19. https://doi.org/10.21831/jk.v5i2.14875
Rahmawati, A. N., Astirin, O. P., & Pangastuti, A. (2018). Intracellular antioxidant activity of Muntingia calabura leaves methanolic extract. Nusantara Bioscience, 10(4), 210–214. https://doi.org/10.13057/nusbiosci/n100402
Rajšp, A., & Fister, I. (2020). A systematic literature review of intelligent data analysis methods for smart sport training. In Applied Sciences (Switzerland) (Vol. 10, Issue 9, pp. 1–31). https://doi.org/10.3390/app10093013
Rønnestad, B. R., Hamarsland, H., Hansen, J., Holen, E., Montero, D., Whist, J. E., & Lundby, C. (2021). Five weeks of heat training increases haemoglobin mass in elite cyclists. Experimental Physiology, 106(1), 316–327. https://doi.org/10.1113/EP088544
Shao, J., Abdelghani, M., Shen, G., Cao, S., Williams, D. S., & Van Hest, J. C. M. (2018). Erythrocyte Membrane Modified Janus Polymeric Motors for Thrombus Therapy. ACS Nano, 12(5), 4877–4885. https://doi.org/10.1021/acsnano.8b01772
Shouval, R., Fein, J. A., Savani, B., Mohty, M., & Nagler, A. (2021). Machine learning and artificial intelligence in haematology. In British Journal of Haematology (Vol. 192, Issue 2, pp. 239–250). https://doi.org/10.1111/bjh.16915
Tsukiyama, Y., Ito, T., Nagaoka, K., Eguchi, E., & Ogino, K. (2017). Effects of exercise training on nitric oxide, blood pressure and antioxidant enzymes. Journal of Clinical Biochemistry and Nutrition, 60(3), 180–186. https://doi.org/10.3164/jcbn.16-108
Versteeg, M., Van Loon, M. H., Wijnen-Meijer, M., & Steendijk, P. (2020). Refuting misconceptions in medical physiology. BMC Medical Education, 20(1), 1–9. https://doi.org/10.1186/s12909-020-02166-6
Wang, W., Wu, X., Yang, C. S., & Zhang, J. (2021). An unrecognized fundamental relationship between neurotransmitters: Glutamate protects against catecholamine oxidation. Antioxidants, 10(10), 1–14. https://doi.org/10.3390/antiox10101564
Warburton, D. E. R., & Bredin, S. S. D. (2017). Health benefits of physical activity: A systematic review of current systematic reviews. In Current Opinion in Cardiology (Vol. 32, Issue 5, pp. 541–556). https://doi.org/10.1097/HCO.0000000000000437
Yuniana, R. (2020). Effect of aerobic and load exercises on body fat and lung vital capacity. Medikora, 19(2), 82–97. https://doi.org/10.21831/medikora.v19i2.34740
DOI: https://doi.org/10.21831/medikora.v21i2.51633
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 MEDIKORA
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indexed by:
In Collaboration with: