Combustion characteristics of briquettes made from microwave-assisted co-pyrolysis products of palm shell and LDPE

Novi Caroko, Universitas Muhammadiyah Yogyakarta, Indonesia
Wahyudi Wahyudi, Universitas Muhammadiyah Yogyakarta, Indonesia
Haryo Wibowo, Zhejiang University of Technology, China

Abstract


Briquettes are solids that are generally made from agricultural waste materials. Char briquettes are one of the alternative energies for daily needs. This study used char from palm shell and LDPE microwave-assisted co-pyrolysis at 450 Watts. The briquettes were made from the product of co-pyrolysis of palm shell and Low-Density Polyethylene (LDPE) with variations in the composition of 0:100, 50:50, and 100:0 and pressure of 50 kg/cm2, 100 kg/cm2, 150 kg/cm2, and 200 kg/cm2. In this research, thermogravimetry analysis (TGA) was the method used to determine combustion characteristics. This study aimed to determine the combustion characteristics, including the Initiation Temperature of Fixed Carbon (ITFC), Initiation Temperature of Volatile Matter (ITVM), Peak of weight loss rate Temperature (PT), Activation Energy (Ea), and Mass Loss Rate (MLR). The results showed that the increased briquettes pressure increases the ITVM, ITFC, PT, and EA. The higher LDPE composition in the briquettes decreased the ITVM, ITFC, PT, and Ea, but increased the MLR.


Keywords


briquette, characteristics, combustion, co-pyrolysis, LDPE, palm shell, thermogravimetry

Full Text:

PDF

References


S. Velusamy, A. Subbaiyan, and R. S. Thangam, “Combustion characteristics of briquette fuels from Sorghum Panicle–Pearl Millets using Cassava Starch Binder,” Environ. Sci. Pollut. Res., vol. 28, no. 17, pp. 21471–21485, 2021, doi: 10.1007/s11356-020-11790-0.

D. S. Primadita, I. N. S. Kumara, and W. G. Ariastina, “A review on biomass for electricity generation in Indonesia,” J. Electr. Electron. Informatics, vol. 4, no. 1, pp. 1–9, 2020, doi: 10.24843/jeei.2020.v04.i01.p01.

D. E. Rahayu, D. Nasarani, W. Hadi, and B. Wrjodirjo, “Potential of biomass residues from Oil Palm agroindustry in Indonesia,” MATEC Web Conf., vol. 197, pp. 1–4, 2018, doi: 10.1051/matecconf/201819713008.

H. Muraina, J. Odusote, and A. Adeleke, “Physical properties of biomass fuel briquette from Oil Palm residues,” J. Appl. Sci. Environ. Manag., vol. 21, no. 4, pp. 777–782, 2017, doi: 10.4314/jasem.v21i4.19.

A. Sharma, V. Pareek, and D. Zhang, “Biomass pyrolysis - review of modelling, process parameters aand catalytic studies,” Renew. Sustain. Energy Rev., vol. 50, pp. 1081–1096, 2015, doi: 10.1016/j.rser.2015.04.193.

M. A. Hossain, J. Jewaratnam, P. Ganesan, J. N. Sahu, S. Ramesh, and S. C. Poh, “Microwave pyrolysis of Oil Palm Fiber (OPF) for hydrogen production: parametric investigation,” Energy Convers. Manag., vol. 115, pp. 232–243, 2016, doi: 10.1016/j.enconman.2016.02.058.

B. Osei Bonsu, M. Takase, and J. Mantey, “Preparation of charcoal briquette from Palm Kernel Shells: case study in Ghana,” Heliyon, vol. 6, no. 10, pp. 1–8, 2020, doi: 10.1016/j.heliyon.2020.e05266.

J. K. Odusote and H. O. Muraina, “Mechanical and combustion characteristics of Oil Palm biomass fuel briquette,” J. Eng. Technol., vol. 8, no. 1, pp. 14–29, 2017.

Fitriani, Haswin, and A. Basir, “Manufacture of LDPE Plastic waste briquettes a Mixed Pine Needles and Clay with various compositions as alternative fuels,” IOP Conf. Ser. Earth Environ. Sci., vol. 1083, no. 1, pp. 1–10, 2022, doi: 10.1088/1755-1315/1083/1/012009.

R. Kaur, P. Gera, M. K. Jha, and T. Bhaskar, “Pyrolysis kinetics and thermodynamic parameters of Castor (Ricinus communis) residue using thermogravimetric analysis,” Bioresour. Technol., vol. 250, pp. 422–428, 2018, doi: 10.1016/j.biortech.2017.11.077.

F. Surahmanto, H. Saptoadi, H. Sulistyo, and T. A. Rohmat, “Investigation of the slow pyrolysis kinetics of oil palm solid waste by the distributed activation energy model,” Biofuels, vol. 11, no. 6, pp. 663–670, 2020, doi: 10.1080/17597269.2017.1387750.

J. Cai, Y. Wang, L. Zhou, and Q. Huang, “Thermogravimetric analysis and kinetics of coal / plastic blends during co-pyrolysis in nitrogen atmosphere,” Fuel Process. Technol., vol. 89, pp. 21–27, 2008, doi: 10.1016/j.fuproc.2007.06.006.

B. Han, Y. Chen, Y. Wu, and D. Hua, “Co-pyrolysis behaviors and kinetics of plastics – biomass blends through thermogravimetric analysis,” vol. 115, no. 1, pp. 227–235, 2014, doi: 10.1007/s10973-013-3228-7.

F. Surahmanto, H. Saptoadi, H. Sulistyo, and T. A. Rohmat, “Investigation of the pyrolysis characteristics and kinetics of oil-palm solid waste by using Coats–Redfern method,” Energy Explor. Exploit., p. 014459871987775, Sep. 2019, doi: 10.1177/0144598719877759.

D. V. Suriapparao, D. K. Ojha, T. Ray, and R. Vinu, “Kinetic analysis of co-pyrolysis of cellulose and polypropylene,” J. Therm. Anal. Calorim., vol. 117, no. 3, pp. 1441–1451, 2014, doi: 10.1007/s10973-014-3866-4.

Ö. Çepelioʇullar and A. E. Pütün, “A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes,” Waste Manag. Res., vol. 32, no. 10, pp. 971–979, 2014, doi: 10.1177/0734242X14542684.

A. A. El-Tawil, H. M. Ahmed, L. S. Ökvist, and B. Björkman, “Devolatilization kinetics of different types of bio-coals using thermogravimetric analysis,” Metals (Basel)., vol. 9, no. 168, pp. 1–13, 2019, doi: 10.3390/met9020168.

P. Basu, Biomass gasification and pyrolysis practical design and theory: biomass characteristic. USA: Academic Press, 2010.

M. Varol, A. T. Atimtay, B. Bay, and H. Olgun, “Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis,” Thermochim. Acta, vol. 510, pp. 195–201, 2010, doi: 10.1016/j.tca.2010.07.014.

M. V. Kok, “Simultaneous thermogravimetry – calorimetry study on the combustion of coal samples : effect of heating rate,” Energy Convers. Manag., vol. 53, pp. 40–44, 2011, doi: 10.1016/j.enconman.2011.08.005.

A. Tarokh, A. Lavrentev, and A. Mansouri, “Numerical investigation of effect of porosity and fuel inlet velocity on diffusion filtration combustion,” J. Therm. Sci., vol. 30, no. 4, pp. 1278–1288, 2021, doi: 10.1007/s11630-021-1461-0.

J. Deng et al., “Combustion properties of coal gangue using thermogravimetry – fourier transform iffrared spectroscopy,” Appl. Therm. Eng., vol. 116, pp. 244–252, 2017, doi: 10.1016/j.applthermaleng.2017.01.083.




DOI: https://doi.org/10.21831/jeatech.v4i1.57808

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Engineering and Applied Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Our journal has been indexed by:

 

Our journal is supported by:

Jurnal Ilmiah Magister Managemen

Creative Commons License

Journal of Engineering and Applied Technology (JEATech) by Faculty of Engineering UNY is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.