K-Nearest Neighbor (K-NN) algorithm with Euclidean and Manhattan in classification of student graduation
Arief Hermawan, Technology University of Yogyakarta, Indonesia
Abstract
K-Nearest Neighbor (K-NN) algorithm is a classification algorithm that has been proven to solve various classification problems. Two approaches that can be used in this algorithm are K-NN with Euclidean and K-NN with Manhattan. The research aims to apply the K-NN algorithm with Euclidean and K-NN with Manhattan to classify the accuracy of graduation. Student graduation is determined by the variables of gender, major, number of first-semester credits, number of second-semester credits, number of third-semester credits, grade point on the first semester, grade point on the second semester, grade point on the third semester, and age. These variables determine the accuracy of student graduation, timely or untimely. The implementation of the K-NN algorithm is carried out using Rapidminer software. The results were obtained after testing 380 training data and 163 testing data. The best accuracy system was achieved at K=7 with a value of 85.28%. The two algorithmic approaches did not affect the accuracy of the results. Furthermore, the addition of the value of K did not completely affect the accuracy.
Keywords
Full Text:
PDFReferences
M. Masrizal and A. Hadiansa, “Prediksi jumlah lulusan mahasiswa STMIK Dumai menggunakan jaringan syaraf tiruan,” Informatika, vol. 9, no. 2, p. 9, 2019, doi: 10.36723/juri.v9i2.98.
I. Vhallah, S. Sumijan, and J. Santony, “Pengelompokan mahasiswa potensial drop out menggunakan metode Clustering K-Means,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 2, no. 2, pp. 572–577, 2018, doi: 10.29207/resti.v2i2.308.
T. Asril and S. M. Isa, “Prediction of students study period using K-Nearest Neighbor algorithm,” International Journal of Emerging Trends in Engineering Research, vol. 8, no. 6, pp. 2585–2593, Jun. 2020, doi: 10.30534/IJETER/2020/60862020.
S. Mulyati, S. M. Husein, and R. Ramdhan, “Rancang bangun aplikasi data mining prediksi kelulusan ujian nasional menggunakan Algoritma (Knn) K-Nearest Neighbor dengan metode Euclidean Distance pada SMPN 2 Pagedangan,” JIKA (Jurnal Informatika), vol. 4, no. 1, p. 65, 2020, doi: 10.31000/jika.v4i1.2288.
M. B. Musthafa, N. Ngatmari, C. Rahmad, R. A. Asmara, and F. Rahutomo, “Evaluation of university accreditation prediction system,” IOP Conference Series: Materials Science and Engineering, vol. 732, no. 1, p. 012041, Jan. 2020, doi: 10.1088/1757-899X/732/1/012041.
A. P. Salim, K. A. Laksitowening, and I. Asror, “Time series prediction on college graduation using KNN algorithm,” 2020 8th International Conference on Information and Communication Technology, ICoICT 2020, Jun. 2020, doi: 10.1109/ICOICT49345.2020.9166238.
B. A. Arifiyani and R. S. Samosir, “Sistem simulasi prediksi profil kelulusan mahasiswa dengan Decison Tree Bekti,” Jurnal Sains dan Teknologi Kalbi Scientia, vol. 5, no. 2, pp. 115–123, 2018.
H. E. Wahanani, M. H. Prami Swari, and F. A. Akbar, “Case based reasoning prediksi waktu studi mahasiswa menggunakan metode Euclidean Distance dan normalisasi Min-Max,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 6, p. 1279, 2020, doi: 10.25126/jtiik.2020763880.
M. Erlangga Dwi Kurniawan, “Implementasi algoritma K-Nearest Neighbor dengan metode klasifikasi dan pengukuran jarak Manhattan Distance untuk prediksi kelulusan UN berdasarkan hasil nilai tryout berbasis Java Desktop pada SMA Harapan Jaya 2,” Skanika, vol. 1, no. 1, pp. 76–81, 2018.
F. E. Prabowo and A. Kodar, “Analisis prediksi masa studi mahasiswa menggunakan Algoritma Naïve Bayes,” Jurnal Ilmu Teknik dan Komputer, vol. 3, no. 2, p. 147, 2019, doi: 10.22441/jitkom.2020.v3.i2.008.
D. Z. Abidin, S. Nurmaini, and R. F. Malik, “Penerapan metode K-Nearest Neighbor dalam memprediksi masa studi mahasiswa ( Studi kasus : mahasiswa STIKOM Dinamika Bangsa ),” in Prosiding Annual Research Seminar, 2017, vol. 3, no. 1, pp. 133–138.
P. Y. Santoso and D. Kusumaningsih, “Algoritma K-nearest Neighbor dengan menggunakan metode Euclidean Distance untuk memprediksi kelulusan ujian nasional berbasis desktop SMA Negeri 12 Tangerang,” Skanika 2018, vol. 1, no. 1, pp. 123–129, 2018.
R. Muliono, J. H. Lubis, and N. Khairina, “Analysis K-Nearest Neighbor Algorithm for improving prediction student graduation time,” SinkrOn, vol. 4, no. 2, p. 42, 2020, doi: 10.33395/sinkron.v4i2.10480.
L. Cahaya, L. Hiryanto, and T. Handhayani, “Student graduation time prediction using intelligent K-Medoids Algorithm,” in Proceeding of 2017 3rd International Conference on Science in Information Technology: Theory and Application of IT for Education, Industry and Society in Big Data Era, ICSITech 2017, 2017, vol. 2018-Janua, pp. 263–266, doi: 10.1109/ICSITech.2017.8257122.
M. Imron and S. A. Kusumah, “Application of data mining classification method for student graduation prediction using K-Nearest Neighbor (K-NN) Algorithm,” IJIIS: International Journal of Informatics and Information Systems, vol. 1, no. 1, pp. 1–8, 2018, doi: 10.47738/ijiis.v1i1.17.
DOI: https://doi.org/10.21831/jeatech.v2i2.42777
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Journal of Engineering and Applied Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal has been indexed by:
Journal of Engineering and Applied Technology (JEATech) by Faculty of Engineering UNY is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.