Platform Microlearning Object Berbantuan Open AI (Artificial Intelligence) sebagai Upaya Membangun Lingkungan Pembelajaran Mandiri Bagi Mahasiswa Pelaksana MBKM (Merdeka Belajar Kampus Merdeka)

Zaudah Cyly Arrum Dalu, Universitas Lambung Mangkurat, Indonesia
Adrie Satrio, Universitas Lambung Mangkurat, Indonesia
Tria Nurwitta Bela Aprastin, Universitas Lambung Mangkurat, Indonesia
Siti Maulidah, Universitas Lambung Mangkurat, Indonesia

Abstract


Kegiatan mahasiswa dalam pelaksanaan Merdeka Belajar Kampus Merdeka (MBKM) semakin intens, mempertegas tuntutan bagi mahasiswa untuk dapat belajar secara mandiri. Dalam upaya memenuhi kebutuhan pembelajaran mandiri ini, diperlukan platform online yang dapat memfasilitasi proses belajar dengan optimal. Penelitian ini bertujuan untuk mengembangkan platform adaptive microlearning dengan bantuan artificial intelligence sebagai solusi untuk kebutuhan tersebut. Metode penelitian yang digunakan adalah penelitian pengembangan (R & D) dengan mengacu pada model ADDIE yang terdiri dari lima tahap: analisis, desain, pengembangan, implementasi, dan evaluasi. Uji coba dilakukan terhadap mahasiswa program studi S1 Teknologi Pendidikan FKIP ULM. Hasil penelitian ini menunjukkan bahwa platform adaptive microlearning yang dikembangkan layak digunakan, dengan persentase skor validitas dari ahli materi sebesar 82% dan ahli web-based learning sebesar 85%. Kedua persentase tersebut termasuk dalam kategori cukup valid. Platform yang berhasil dikembangkan dapat efektif digunakan sebagai suplemen dalam pembelajaran mandiri bagi mahasiswa.


Keywords


artificial intelligenc; microlearning object; pembelajaran mandiri

Full Text:

PDF

References


Akbar, S., & Holid, A. (2013). Instrumen perangkat pembelajaran. Remaja Rosdakarya.

Akker, J. van den. (1999). Principles and methods of development research. In Design Approaches and Tools in Education and Training (pp. 1–2). Springer. https://doi.org/10.1007/978-94-011-4255-7_1

Álvarez, C., & Falcon, S. (2023). Students’ preferences with university teaching practices: Analysis of testimonials with artificial intelligence. Educational Technology Research and Development, 71(1), 1709–1724. https://doi.org/10.1007/s11423-023-10239-8

Anderson, A., Huttenlocher, D., Kleinberg, J., & Leskovec, J. (2014). Engaging with massive online courses. WWW 2014 - Proceedings of the 23rd International Conference on World Wide Web, 1–11. https://doi.org/10.48550/arXiv.1403.3100

Branch, R. M. (2014). Instructional design: The ADDIE approach. Springer. https://doi.org/10.1007/978-0-387-09506-6

Chang, D. H., Lin, M. P., Hajian, S., & Wang, Q. Q. (2023). Educational design principles of using AI chatbot that supports self-regulated learning in education: Goal setting, feedback, and personalization. MDPI, 15(17), 1–15. https://doi.org/10.3390/su151712921

Correa, D., Isaza, F. A., Mazo, R., & Giraldo, G. L. (2018). CME a web application framework learning technique based on concerns, micro-learning and examples. International Conference on Web Engineering, 10845(1), 17–32. https://doi.org/10.1007/978-3-319-91662-0_2

Cyly, Z., AS, S., Prasetyo, Y. D., & Nugroho, Y. S. (2022). Pengembangan bahan ajar digital berbasis kompetensi berorientasi produksi pada mata kuliah dasar fotografi menggunakan aplikasi Sigil. STEAM Engineering (Journal of Science, Technology, Education and Mechanical Engineering), 4(2), 88–96. https://doi.org/10.37304/jptm.v4i2.8355

Dolowitz, A., Collier, J., Hayes, A., & Kumsal, C. (2023). Iterative design and integration of a Microlearning Mobile App for performance improvement and support for NATO employees. TechTrends, 67(1), 143–149. https://doi.org/10.1007/s11528-022-00781-2

Giurgiu, L. (2017). Microlearning an evolving elearning trend. Scientific Bulletin, 22(1), 18–23. https://doi.org/10.1515/bsaft-2017-0003

Gorham, T., Majumdar, R., & Ogata, H. (2023). Analyzing learner profiles in a Microlearning App for training language learning peer feedback skills. Journal of Computers in Education, 10(3), 549–574. https://doi.org/10.1007/s40692-023-00264-0

Guo, P. J., Kim, J., & Rubin, R. (2014). How video production affects student engagement: An empirical study of MOOC videos. L@S 2014 - Proceedings of the 1st ACM Conference on Learning at Scale, 41–50. https://doi.org/10.1145/2556325.2566239

Jin, S. H., Im, K., Yoo, M., Roll, I., & Seo, K. (2023). Supporting students’ self-regulated learning in online learning using artificial intelligence applications. International Journal of Educational Technology in Higher Education, 20(37), 1–21. https://doi.org/10.1186/s41239-023-00406-5

Kizilcec, R. F., Pérez-Sanagustín, M., & Maldonado, J. J. (2017). Self-regulated learning strategies predict learner behavior and goal attainment in massive open online courses. Computers and Education, 104(1), 18–33. https://doi.org/10.1016/j.compedu.2016.10.001

Li, Z., Zhou, M., & Lam, K. K. L. (2022). Dance in Zoom: Using video conferencing tools to develop students’ 4C skills and self-efficacy during COVID-19. Thinking Skills and Creativity, 46(1), 1–13. https://doi.org/10.1016/j.tsc.2022.101102

Lin, J., Sun, G., Cui, T., Shen, J., Xu, D., Beydoun, G., Yu, P., Pritchard, D., Li, L., & Chen, S. (2020). From ideal to reality: Segmentation, annotation, and recommendation, the vital trajectory of intelligent micro learning. World Wide Web, 23(1), 1747–1767. https://doi.org/10.1007/s11280-019-00730-9

Maulana, F. I., Azis, B., Primadani, T. I. W., & Hasibuan, P. R. A. (2023). FunAR-furniture augmented reality application to support practical laboratory experiments in interior design education. Indonesian Journal of Electrical Engineering and Computer Science, 31(2), 845–855. https://doi.org/10.11591/ijeecs.v31.i2.pp845-855

Molenaar, I. (2022). The concept of hybrid human-AI regulation: Exemplifying how to support young learners’ self-regulated learning. Computers and Education: Artificial Intelligence, 3(1), 1–17. https://doi.org/10.1016/j.caeai.2022.100070

Ochieng, P. A. (2020). Children rights to education using ADDIE model approach in arid and semi arid lands (ASAL), Kenyan perspective. AJEST: African Journal of Education Science and Technology, 5(4), 290–297. https://doi.org/10.2022/ajest.v5i4.444

Park, Y., & Kim, Y. (2018). A design and development of micro-learning content in e-learning system. International Journal on Advanced Science, Engineering and Information Technology, 8(1), 56–61. http://dx.doi.org/10.18517/ijaseit.8.1.2698

Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(22), 1–13. https://doi.org/10.1186/s41039-017-0062-8

Prasetyo, D. (2023). Pengembangan e-modul interaktif berbasis problem based learning pada materi gaya menggunakan aplikasi flip pdf professional di sekolah dasar. Universitas Jambi.

Redondo, R. P. D., Rodríguez, M. C., Escobar, J. J. L., & Vilas, A. F. (2021). Integrating micro-learning content in traditional e-learning platforms. Multimedia Tools and Applications, 80(2), 3121–3151. https://doi.org/10.1007/s11042-020-09523-z

Sa’diyah, M., Nurhayati, I., Endri, Supriadi, D., & Afrianto, Y. (2022). The implementation of independent learning independent campus: The new paradigm of education in Indonesia. Journal of Educational and Social Research, 12(4), 289–299. https://doi.org/10.36941/jesr-2022-0114

Stephansen, H. C., & Couldry, N. (2014). Understanding micro-processes of community building and mutual learning on twitter: A ‘small data’ approach. Information Communication and Society, 17(10), 1212–1227. https://doi.org/10.1080/1369118X.2014.902984

Sugiyono. (2017). Metode penelitian pendidikan: Pendekatan kuantitatif, kualitatif, dan R&D. Alfabeta.

Sulyanah, S., Hasanah, F. N., & Untari, R. S. (2021). Application of web based learning to measure students learning interest. Journal of Physics: Conference Series, 1764(1), 1–6. https://doi.org/10.1088/1742-6596/1764/1/012099

Sutarto, Muzaki, A., Hastuti, I. D., Fujiaturrahman, S., & Untu, Z. (2022). Development of an ethnomathematics-based e-module to improve students’ metacognitive ability in 3D geometry topic. International Journal of Interactive Mobile Technologies, 16(3), 32–46. https://doi.org/10.3991/IJIM.V16I03.24949

Tabares, M. S., Vallejo, P., Montoya, A., Sanchez, J., & Correa, D. (2021). SECA: A feedback rules model in a ubiquitous microlearning context. ACM International Conference Proceeding Series, 136–142. https://doi.org/10.1145/3460620.3460745

Woongbin, P., & Kwon, H. (2023). Implementing artificial intelligence education for middle school technology education in Republic of Korea. International Journal of Technology and Design Education, 1(1), 1–27. https://doi.org/10.1007/s10798-023-09812-2




DOI: https://doi.org/10.21831/ep.v4i2.66893

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Zaudah Cyly Arrum Dalu, Adrie Satrio, Tria Nurwitta Bela A., Siti Maulidah

Flag Counter

View My Stats Epistema