Implementation of 48V/350W BLDC Motor Speed Control With PID Method Using Microcontroller-Based Sensorless Techniques

Nurizka Fitra Maula, Politeknik Negeri Bandung, Indonesia
Sofyan Muhammad Ilman, Politeknik Negeri Bandung, Indonesia
Sofian Yahya, Politeknik Negeri Bandung, Indonesia

Abstract


A brushless direct current (BLDC) motor is widely used in automotive and industrial applications due to its low noise and high performance. However, traditional BLDC motor control relies on Hall-effect sensors, which increase costs, enlarge motor dimensions, and risk errors from sensor failures. This research focuses on implementing a sensorless control system for a 350W, 48V BLDC motor. The goal is to achieve stable operation at a set speed of 250 rpm, with a steady-state error ≤3%, under varying loads from 0 Nm to 2.7 Nm. Using the Ziegler-Nichols PID tuning method, the study was conducted in the Electrical Machinery Laboratory at Bandung State Polytechnic. The results show that the sensorless control system effectively maintains setpoint speeds of 90 rpm, 120 rpm, 200 rpm, and 250 rpm. At 250 rpm, the system achieved an average steady-state error of 2.44% using PID parameters Kp = 3.13, Ki = 8.69, and Kd = 0.25. The motor’s output power ranged from 136.88W at minimum load to 297.92W at maximum load, demonstrating improved efficiency and system performance


Keywords


BLDC; sensorless; PID

Full Text:

PDF

References


M. S. R. S. M. Reza Bastari Imran Watimea, “Pertimbangan Pelanggan Terhadap Keinginan Membeli (Purchase Intention) Motor Listrik,” JPTD, vol. 24, no. 1, pp. 21–27, Jun. 2022, doi: 10.25104/jptd.v24i1.2097.

M. R. Rusli et al., “BLDC Motor Drives with A Programmable Simplified C-Block to Generate Accurate Six-Step PWM Based on STM32 Microcontroller,” ELINVO, vol. 7, no. 2, pp. 112–118, Jan. 2023, doi: 10.21831/elinvo.v7i2.52992.

G. Scelba, G. De Donato, M. Pulvirenti, F. Giulii Capponi, and G. Scarcella, “Hall-Effect Sensor Fault Detection, Identification, and Compensation in Brushless DC Drives,” IEEE Trans. on Ind. Applicat., vol. 52, no. 2, pp. 1542–1554, Mar. 2016, doi: 10.1109/TIA.2015.2506139.

V. S. Virkar and S. S. Karvekar, “Luenberger observer based sensorless speed control of induction motor with Fuzzy tuned PID controller,” in 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India: IEEE, Jul. 2019, pp. 503–508. doi: 10.1109/ICCES45898.2019.9002268.

R. P. Tripathi, A. K. Singh, P. Gangwar, and R. K. Verma, “Sensorless speed control of DC motor using EKF estimator and TSK fuzzy logic controller,” Automatika, vol. 63, no. 2, pp. 338–348, Apr. 2022, doi: 10.1080/00051144.2022.2039990.

K. Vanchinathan, K. R. Valluvan, C. Gnanavel, and C. Gokul, “Design methodology and experimental verification of intelligent speed controllers for sensorless permanent magnet BRUSHLESS DC motor: Intelligent speed controllers for electric motor,” Int Trans Electr Energ Syst, vol. 31, no. 9, Sep. 2021, doi: 10.1002/2050-7038.12991.

K. Vanchinathan and K. R. Valluvan, “A Metaheuristic Optimization Approach for Tuning of Fractional-Order PID Controller for Speed Control of Sensorless BLDC Motor,” J CIRCUIT SYST COMP, vol. 27, no. 08, p. 1850123, Jul. 2018, doi: 10.1142/S0218126618501232.

S. Usha, P. M. Dubey, R. Ramya, and M. V. Suganyadevi, “Performance enhancement of BLDC motor using PID controller,” IJPEDS, vol. 12, no. 3, p. 1335, Sep. 2021, doi: 10.11591/ijpeds.v12.i3.pp1335-1344.

K. Vanchinathan and K. R. Valluvan, “Tuning of Fractional Order Proportional Integral Derivative Controller for Speed Control of Sensorless BLDC Motor using Artificial Bee Colony Optimization Technique,” in Intelligent and Efficient Electrical Systems, vol. 446, M. C. Bhuvaneswari and J. Saxena, Eds., in Lecture Notes in Electrical Engineering, vol. 446. , Singapore: Springer Singapore, 2018, pp. 117–127. doi: 10.1007/978-981-10-4852-4_11.

P. D. S. and S. K. R., “Artificial Neural Network with Optimized FOPID for Speed Control of Sensorless BLDC Motor Drive,” Cybernetics and Systems, pp. 1–23, Dec. 2022, doi: 10.1080/01969722.2022.2148920.

C. Buyukyildiz and I. Saritas, “Sensorless Brushless DC Motor Control Using Type-2 Fuzzy Logic,” International Journal of Intelligent Systems and Applications in Engineering.

S. S. Selva Pradeep and M. Marsaline Beno, “Hybrid Sensorless Speed Control Technique for BLDC Motor Using ANFIS Automation,” Intelligent Automation & Soft Computing, vol. 33, no. 3, pp. 1757–1770, 2022, doi: 10.32604/iasc.2022.023470.

K. Sreeram, “Design of Fuzzy Logic Controller for Speed Control of Sensorless BLDC Motor Drive,” in 2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT), Kannur: IEEE, Mar. 2018, pp. 18–24. doi: 10.1109/ICCPCCT.2018.8574280.

A. Lotfy, M. Kaveh, M. R. Mosavi, and A. R. Rahmati, “An enhanced fuzzy controller based on improved genetic algorithm for speed control of DC motors,” Analog Integr Circ Sig Process, vol. 105, no. 2, pp. 141–155, Nov. 2020, doi: 10.1007/s10470-020-01599-9.

D. Somwanshi, M. Bundele, G. Kumar, and G. Parashar, “Comparison of Fuzzy-PID and PID Controller for Speed Control of DC Motor using LabVIEW,” Procedia Computer Science, vol. 152, pp. 252–260, 2019, doi: 10.1016/j.procs.2019.05.019.

S. Sattu, V. K. Awaar, and P. Jugge, “Speed control of robust position sensor less PMBLDC motor by Fuzzy controller,” E3S Web Conf., vol. 309, p. 01063, 2021, doi: 10.1051/e3sconf/202130901063.

A. Salmaninejad and R. V. Mayorga, “Sensor-less Brushed DC Motor Speed Control with Intelligent Controllers,” WSEAS TRANSACTIONS ON SYSTEMS, vol. 20, pp. 140–148, Jul. 2021, doi: 10.37394/23202.2021.20.16.

H. Qu, J. Zeng, R. Sheng, and Y. Guo, “Research on Sensorless Fuzzy PID Control of BDCM based on Improved State Observer:,” in Proceedings of 5th International Conference on Vehicle, Mechanical and Electrical Engineering, Dalian City, China: SCITEPRESS - Science and Technology Publications, 2019, pp. 416–420. doi: 10.5220/0008868704160420.

U. K. Soni and R. K. Tripathi, “Sensorless control of high‐speed BLDC motor using equal area criterion based precise commutation scheme with Fuzzy based phase delay compensation,” Int Trans Electr Energ Syst, vol. 31, no. 9, Sep. 2021, doi: 10.1002/2050-7038.13001.

L. I. Iepure, I. Boldea, and F. Blaabjerg, “Hybrid I-f Starting and Observer-Based Sensorless Control of Single-Phase BLDC-PM Motor Drives,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3436–3444, Sep. 2012, doi: 10.1109/TIE.2011.2172176.

M. Mahmud, S. M., A. H., A. Nurashikin, and A. K.M., “Modeling and Performance Analysis of an Adaptive PID Speed Controller for the BLDC Motor,” IJACSA, vol. 11, no. 7, 2020, doi: 10.14569/IJACSA.2020.0110736.

L. Bin et al., “A novel approach to design of a power factor correction and total harmonic distortion reduction-based BLDC motor drive,” Front. Energy Res., vol. 10, p. 963889, Jan. 2023, doi: 10.3389/fenrg.2022.963889.

Y. Li, X. Song, X. Zhou, Z. Huang, and S. Zheng, “A Sensorless Commutation Error Correction Method for High-Speed BLDC Motors Based on Phase Current Integration,” IEEE Trans. Ind. Inf., vol. 16, no. 1, pp. 328–338, Jan. 2020, doi: 10.1109/TII.2019.2917608.

X. Zhou, Y. Zhou, C. Peng, F. Zeng, and X. Song, “Sensorless BLDC Motor Commutation Point Detection and Phase Deviation Correction Method,” IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5880–5892, Jun. 2019, doi: 10.1109/TPEL.2018.2867615.

S.-H. Kim, “Brushless direct current motors,” in Electric Motor Control, Elsevier, 2017, pp. 389–416. doi: 10.1016/B978-0-12-812138-2.00010-6.

A. Keyhani, M. N. Marwali, L. E. Higuera, G. Athalye, and G. Baumgartner, “An Integrated Virtual Learning System for the Development of Motor Drive Systems,” IEEE Power Eng. Rev., vol. 22, no. 1, pp. 67–68, Jan. 2002, doi: 10.1109/MPER.2002.4311675.

R. F. Anugrah, “Kontrol Kecepatan Motor Brushless DC Menggunakan Six Step Comutation Dengan Kontrol PID ( Propotional Integral Derivative ),” J. Tek. Elektro dan Komput. TRIAC, vol. 7, no. 2, pp. 57–63, 2020, doi: 10.21107/triac.v7i2.7923.

K. J. Åström and B. Wittenmark, Adaptive control, 2. ed. Mineola, N.Y: Dover Publ, 2008.

N. S. Nise, Control systems engineering, Seventh edition. Hoboken, NJ: Wiley, 2015.

R. C. Dorf and R. H. Bishop, Modern control systems, Thirteenth edition. Hoboken: Pearson, 2016




DOI: https://doi.org/10.21831/elinvo.v9i2.77124

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Elinvo (Electronics, Informatics, and Vocational Education)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Our Journal indexed by:

ISSN 2477-2399 (online) || ISSN 2580-6424 (print)

View My Stats

Flag Counter