Implementation of K-Means Clustering in Mapping Teacher Distribution Using Geographic Information System

Khairul Muttaqin, Universitas Samudra, Indonesia
Rif’ah Nurhidayah, Universitas Samudra, Indonesia
Novianda Novianda, Universitas Samudra, Indonesia
Ahmad Ihsan, Universitas Samudra, Indonesia
Jumriani Sultan, Universitas Negeri Yogyakarta, Indonesia
Fina Rifqiyah, Universitas Negeri Yogyakarta, Indonesia

Abstract


The placement of teachers in Indonesia has not been evenly distributed across several regions due to inaccurate recruitment and placement processes. The quality of education, particularly in rural areas, is negatively impacted by this uneven distribution. Teachers play a crucial role in enhancing education, making it essential to address this issue. This study seeks to equilibrate the allocation of teachers in Langsa City using the K-Means Clustering method based on the number of teachers, students, and study groups at the Madrasah Ibtidaiyah, Madrasah Tsanawiyah, and Madrasah Aliyah levels. The clustering results are then mapped using the Quantum Geographic Information System. The study identifies 20 schools with a shortage of teachers, 7 schools with sufficient teachers, and 3 schools with a surplus. The utilization of the K-Means Clustering method demonstrated a high accuracy rate of 92.8%. The implications of these findings suggest that educational authorities can use the clustering results to strategically address teacher shortages by reallocating teaching resources more effectively, thus potentially improving educational outcomes in underserved areas. Moreover, the GIS mapping offers a practical tool for ongoing monitoring and decision-making regarding teacher distribution.

Keywords


Teachers’ distribution; clustering; K-Means; GIS; QGIS

Full Text:

PDF

References


M. Novita, C. Wijaya, and A. Atmoko, “Dynamic of Indonesian Teacher Distribution Policies Implementation at Regional Level,” Journal of Education & Social Policy, vol. 7, no. 1, pp. 15–24, 2020.

J. Zhang, S. Jin, M. Torero, and T. Li, “Teachers and Urban‐Rural Gaps in Educational Outcomes,” American Journal of Agricultural Economics, vol. 100, no. 4, pp. 1207–1223, 2018.

E. Purwanto and Y. Hayati, “Impact of teacher distribution on student academic performance in rural Indonesia,” J. Educ. Dev., vol. 6, no. 2, pp. 100–110, 2018.

Drake, B. C. (1997). Geographic Dimensions of Indonesia’s Increasing Importance in the World. 19–26.

Mustakim, Z., & Kamal, R. (2021). K-Means Clustering for Classifying the Quality Management of Secondary Education in Indonesia. Cakrawala Pendidikan, 40(3), 725–737. https://doi.org/10.21831/cp.v40i3.40150.

T. Widiyaningtyas, U. Pujianto, and M. Prabowo, “K-Medoids and K-Means Clustering in High School Teacher Distribution,” 2019 Int. Conf. Electr. Electron. Inf. Eng. (ICEEIE), pp. 330–335, 2019, doi: 10.1109/ICEEIE47180.2019.8981466.

Chen, Y., Tan, P., Li, M., Yin, H., & Tang, R. (2024). K-means clustering method based on nearest-neighbor density matrix for customer electricity behavior analysis. International Journal of Electrical Power and Energy Systems, 161(July). https://doi.org/10.1016/j.ijepes.2024.110165.

Li, Y., & Zhang, H. (2024). Big data technology for teaching quality monitoring and improvement in higher education - joint K-means clustering algorithm and Apriori algorithm. Systems and Soft Computing, 6(July), 200125. https://doi.org/10.1016/j.sasc.2024.200125.

S. N. Suryahadi and A. Sambodho, “Incentive-based teacher placements in remote Indonesia: A case study,” Southeast Asian Studies, vol. 54, no. 1, pp. 45–56, 2018.

B. Susetyo, D. R. Kurniawan, and E. Hermawan, “Geospatial mapping and K-Means clustering for teacher shortage analysis in Indonesian schools,” Int. J. Geogr. Inf. Sci., vol. 33, no. 9, pp. 2001–2013, 2020.

G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.

Y. A. Priambodo and S. Y. J. Prasetyo, “Pemetaan Penyebaran Guru di Provinsi Banten dengan Menggunakan Metode Spatial Clustering K-Means (Studi kasus: Wilayah Provinsi Banten),” Indones. J. Comput. Model., vol. 1, no. 1, pp. 18–27, 2018.

M. Ramadhan, D. D. Priyatna, and A. Hidayat, “Analysis of teacher placement efficiency using Geographic Information Systems (GIS),” J. Teknol. Inf., vol. 13, no. 4, pp. 123–130, 2020.

M. Utami and H. Sutopo, “K-Means clustering implementation in analyzing teacher distribution data in Semarang,” 2019 Int. Conf. Sci. Technol., pp. 105–112, 2019.

D. Susanto, “Application of GIS in Education Data Mapping,” Int. Conf. Comput. Eng. Inf. Technol., pp. 115–123, 2020.

H. Rahmawati, F. A. Putri, and N. A. Azizah, “Optimizing teacher allocation using GIS-based DBSCAN clustering,” Int. J. Inf. Technol. Syst. Eng., vol. 6, no. 2, pp. 80–95, 2021.

A. S. Fauzi and R. Wahyudin, “Gaussian Mixture Models in Clustering Teachers for Effective Resource Distribution,” J. Comput. Educ., vol. 5, no. 3, pp. 105–115, 2020.

A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,” J. Media Inform. Budidarma, vol. 4, no. 1, p. 51, 2020.

K. L. BPS, Ed., Kota Langsa Dalam Angka 2021. Kota Langsa: BPS-Statistics of Langsa Municipality, 2021.

E. Priyanto and H. Setiawan, “Mapping teacher distribution using K-Means clustering and GIS in West Java,” 2020 Int. Conf. Comput. Eng. Appl., pp. 145–150, 2020.

M. Wicaksono and A. F. Nurcahya, “Clustering analysis of teacher distribution using GIS,” Int. Conf. Inf. Technol. Electr. Eng., pp. 85–90, 2019.

F. Arifin and D. Purnamasari, “GIS-based teacher distribution modeling in East Java,” J. Teknol. Inf. dan Rekayasa, vol. 4, no. 3, pp. 215–225, 2021.

F. F. Prasetyo, “Mapping the distribution of teachers in Banten Province using K-Means clustering,” Int. Conf. Adv. Comput. Sci., vol. 4, pp. 77–84, 2018.

R. Renaldi and D. A. Anggoro, “Sistem Informasi Geografis Pemetaan Sekolah Menengah Atas/Sederajat di Kota Surakarta menggunakan Leaflet Javascript Library berbasis Website,” Emit. J. Tek. Elektro, vol. 20, no. 2, pp. 109–116, 2020.




DOI: https://doi.org/10.21831/elinvo.v9i1.76884

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Elinvo (Electronics, Informatics, and Vocational Education)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Our Journal indexed by:

ISSN 2477-2399 (online) || ISSN 2580-6424 (print)

View My Stats

Flag Counter