Classification of Organic and Inorganic Waste Types Based on Neural Networks
M. Habiburrahman, Department of Electronic and Informatic Engineering, Faculty of Engineering, Universitas Negeri Yogyakarta, Indonesia
Wahyu Ramadhani Gusti,
Abstract
Garbage is the residue of unused industrial production and household consumption. In Indonesia, waste is divided into 2 types, namely organic and inorganic waste. The two types of waste can be recycled in diverse ways, so they must be separated. So far, it is often difficult for the community to sort waste. This paper presents the process of recognizing and sorting waste automatically by utilizing Artificial Intelligence technology, especially Artificial Neural Networks (ANN). The ANN architecture used in this study consists of 4 layers. The number of neurons in each layer consists of 3 neurons in the input layer, 4 neurons in the hidden layer-1, 4 neurons in the hidden layer-2 and 1 neuron in the output layer. The ANN model that has been designed is trained, so that the best weight and bias model will be obtained, which in turn gives the ANN the ability to be able to sort waste properly. The best weights and biases will then be implanted into the Arduino UNO Microcontroller hardware. In this developed system, the microcontroller is given input obtained from 3 kinds of sensors, namely capacitive proximity, inductive proximity, and photodiode. While the input consists of 2 pieces of organic or in organic waste conditions. From the test results, it was found that the system has 100% training accuracy and 100% test accuracy.
Keywords
Full Text:
PDFReferences
S. Amelia, A. Rahayu, and S. Salamah, “PENYULUHAN DAN PELATIHAN PEMANFAATAN SAMPAH ANORGANIK DAN ORGANIK MENJADI ECOBRICK DAN PUPUK CAIR ORGANIK,” J. Pemberdaya. Publ. Has. Pengabdi. Kpd. Masy., vol. 3, no. 3, pp. 341–348, Dec. 2019, doi: 10.12928/jp.v3i3.1132.
N. Hayatin, B. Mavindo, and E. B. Cahyono, “The Development of Mobile Application Based Customer Service System in Bank Sampah Malang,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 2, no. 4, pp. 291–298, 2017, doi: 10.22219/kinetik.v2i4.266.
E. Andina, “Analisis Perilaku Pemilahan Sampah di Kota Surabaya,” J. Masal. Sos., vol. 10, no. 2, pp. 119–138, 2019, doi: 10.22212/aspirasi.v10i2.1424.
A. Demirbas, “Waste management, waste resource facilities and waste conversion processes,” Energy Convers. Manag., vol. 52, no. 2, pp. 1280–1287, Feb. 2011, doi: 10.1016/J.ENCONMAN.2010.09.025.
I. M. Harjanti and P. Anggraini, “Pengelolaan sampah di tempat pembuangan akhir (tpa) jatibarang, kota semarang,” J. Planol., vol. 17, no. 2, pp. 185–197, 2020.
R. Alfian and A. Phelia, “Evaluasi Efektifitas Sistem Pengangkutan Dan Pengelolaan Sampah Di TPA Sarimukti Kota Bandung,” JICE (Journal Infrastructural Civ. Eng., vol. 2, no. 01, pp. 16–22, 2021, doi: 10.33365/jice.v2i01.1084.
M. Albani, S. Arif, and S. Muhlisin, “Pemanfaatan Limbah Anorganik di TPA Galuga Dalam Meningkatkan Perekonomian Masyarakat,” El-Mal J. Kaji. Ekon. Bisnis Islam, vol. 3, no. 2, pp. 314–333, 2022, doi: 1047467/elmal.v5i2.808.
A. Ibnul Rasidi, Y. A. H. Pasaribu, A. Ziqri, and F. D. Adhinata, “Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, pp. 142–149, 2022, doi: 10.28932/jutisi.v8i1.4314.
D. Marlina and F. Arifin, “Predicting The Number of Tourists Based on Backpropagation Algorithm,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 439–445, Jun. 2021, doi: 10.29207/RESTI.V5I3.3061.
A. Setyawan and F. Arifin, “Classification Heart Diseases Base on Heart Sound Using Backpropagation Algorithm,” J. FORTEI-JEERI, vol. 1, no. 1, pp. 19–28, May 2020, doi: 10.46962/FORTEIJEERI.V1I1.4.
R. R. Pamungkas, A. G. Putrada, and M. Abdurohman, “Performance Improvement of Non Invasive Blood Glucose Measuring System With Near Infra Red Using Artificial Neural Networks,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 315–324, 2019, doi: 10.22219/kinetik.v4i4.844.
D. Rahayu, R. Cahya Wihandika, and R. S. Perdana, “Implementasi Metode Backpropagation Untuk Klasifikasi Kenaikan Harga Minyak Kelapa Sawit,” vol. 2, no. 4, pp. 1547–1552, 2018, Accessed: Jul. 01, 2022. [Online]. Available: http://j-ptiik.ub.ac.id.
K. Fatmawati, E. Sabna, Muhardi, and Y. Irawan, “RANCANG BANGUN TEMPAT SAMPAH PINTAR MENGGUNAKAN SENSOR JARAK BERBASIS MIKROKONTROLER ARDUINO,” RJOCS (Riau J. Comput. Sci., vol. 6, no. 2, pp. 124–134, Sep. 2020, doi: 10.30606/RJOCS.V6I2.2058.
Y. A. Bahtiar, D. Ariyanto, M. Taufik, and T. Handayani, “Pemilah Organik dengan Sensor Inframerah Terintegerasi Sensor Induktif dan Kapasitif,” J. EECCIS, vol. 13, no. 3, pp. 109–113, 2019.
A. Scholz et al., “A Hybrid Optoelectronic Sensor Platform with an Integrated Solution-Processed Organic Photodiode,” Adv. Mater. Technol., vol. 6, no. 2, p. 2000172, Feb. 2021, doi: 10.1002/ADMT.202000172.
M. Abi Hamid, D. Aditama, E. Permata, N. Kholifah, M. Nurtanto, and N. Wachid Abdul Majid, “Simulating the COVID-19 epidemic event and its prevention measures using python programming,” Indones. J. Electr. Eng. Comput. Sci., vol. 26, no. 1, pp. 278–288, 2022, doi: 10.11591/ijeecs.v26.i1.pp278-288.
D. Desnita, F. Festiyed, F. Novitra, A. Ardiva, and M. Y. Navis, “The Effectiveness of CTL-based Physics E-module on the Improvement of the Creative and Critical Thinking Skills of Senior High School Students,” TEM J., vol. 11, no. 2, pp. 802–810, 2022, doi: 10.18421/TEM112.
M. Baharuddin, M. M. Baharuddin, H. Azis, and T. Hasanuddin, “ANALISIS PERFORMA METODE K-NEAREST NEIGHBOR UNTUK IDENTIFIKASI JENIS KACA,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, Dec. 2019, doi: 10.33096/ilkom.v11i3.489.269-274.
J. Thomas, “Why Python?,” in University of Arizona Department of Mathematics, 2012.
A. Winursito, F. Arifin, A. Nasuha, A. S. Priambodo, and Muslikhin, “Design of Robust Heart Abnormality Detection System based on Wavelet Denoising Algorithm,” J. Phys. Conf. Ser., vol. 2111, no. 1, p. 012048, Nov. 2021, doi: 10.1088/1742-6596/2111/1/012048.
A. Nasuha, F. Arifin, D. Irmawati, and N. Hasanah, “Visual Speech Recognition for Daily Indonesian Words Based on Combination of Double Difference and Image Projection Method,” J. Phys. Conf. Ser., vol. 1413, no. 1, p. 012040, Nov. 2019, doi: 10.1088/1742-6596/1413/1/012040.
A. A. Heidari, H. Faris, S. Mirjalili, I. Aljarah, and M. Mafarja, “Ant lion optimizer: Theory, literature review, and application in multi-layer perceptron neural networks,” Stud. Comput. Intell., vol. 811, pp. 23–46, 2020, doi: 10.1007/978-3-030-12127-3_3/COVER/.
F. Ibrahim, “Implementasi Machine Learning Pada Alat Deteksi Emosi Untuk Sistem Kontrol Suhu Dan Pencahayaan Ruangan Implementation Of Machine Learning In Emotion Detection Device For Room Temperature And Lightning Control Systems,” vol. 9, no. 2, pp. 450–456, 2022.
O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, Nov. 2018, doi: 10.1016/J.HELIYON.2018.E00938.
S. AHMADI, K. ANAM, and W. WIDJONARKO, “Peningkatan Efisiensi Energi pada Kendaraan Listrik dengan Elektronik Diferensial Berbasis ANN (Artificial Neural Network),” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 8, no. 3, p. 642, 2020, doi: 10.26760/elkomika.v8i3.642.
J. Brownlee, Long short-term memory networks with python: develop sequence prediction models with deep learning. Machine Learning Mastery, 2017.
DOI: https://doi.org/10.21831/elinvo.v8i1.53284
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Elinvo (Electronics, Informatics, and Vocational Education)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Our Journal indexed by:
ISSN 2477-2399 (online) || ISSN 2580-6424 (print)