A New Two Switched-Impedance Network for High Ratio Quasi-Z-Source Inverter

Irham Fadlika, Department of Electrical Engineering, State University of Malang; Centre of Advanced Material and Renewable Energy, State University of Malang, Indonesia, Indonesia
Mega Agustina, Department of Electrical Engineering, State University of Malang, Indonesia, Indonesia
Rahmatullah Aji Prabowo, Department of Electrical Engineering, State University of Malang, Indonesia;Adikari Wisesa Indonesia Ltd, East Jakarta, Indonesia
Misbahul Munir, Department of Electrical Engineering, State University of Malang, Indonesia, Indonesia
Arif Nur Afandi, Department of Electrical Engineering, State University of Malang, Indonesia; Centre of Advanced Material and Renewable Energy (CAMRY), State University of Malang, Indonesia, Indonesia

Abstract


The increasing demand and widespread of renewable energy inherently compel the development of power electronics converter as an interface between consumers and the energy source/s. This paper presents a new two switched-impedance networks qZSI converter called High Ratio Two Switched-impedance quasi-Z-Source Inverter (HR2SZ-qZSI). Compared with the previous topology, this proposed HR2SZ-qZSI topology can achieve higher voltage gain with lower shoot-through duty ratio, and a higher boost factor. This paper also discusses comparative analysis between the previous topology and the proposed HR2SZ-qZSI topology. Furthermore, the simulation and experimental data are presented to prove the theoretical analysis of the proposed HR2SZ-qZSI topology. Despite the additional components needed, it accentuates that this proposed converter retains all features of qZSI: common ground point between the dc source and converter and smooth input current operation. Furthermore, almost all the devices rating including capacitor and diode voltage, and inductor current ripple are lower than the preceding relevant two switched-impedance qZSI family. Accordingly, this proposed HR2SZ-qZSI clearly a good power conditioning alternative for renewable generation system.

Keywords


quasi-Z-Source Inverter (qZSI); voltage gain; boost factor; inductor current ripple

Full Text:

PDF

References


Erdiwansyah, R. Mamat, M. S. M. Sani, and K. Sudhakar, “Renewable energy in Southeast Asia: Policies and recommendations,” Sci. Total Environ., vol. 670, pp. 1095–1102, 2019, doi: 10.1016/j.scitotenv.2019.03.273.

X. Xu, Z. Wei, Q. Ji, C. Wang, and G. Gao, “Global renewable energy development: Influencing factors, trend predictions and countermeasures,” Resour. Policy, vol. 63, no. April, 2019, doi: 10.1016/j.resourpol.2019.101470.

A. K. Shukla, K. Sudhakar, and P. Baredar, “Renewable energy resources in South Asian countries: Challenges, policy and recommendations,” Resour. Technol., vol. 3, no. 3, pp. 342–346, 2017, doi: 10.1016/j.reffit.2016.12.003.

M. M. Vanegas Cantarero, “Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries,” Energy Res. Soc. Sci., vol. 70, no. July, p. 101716, 2020, doi: 10.1016/j.erss.2020.101716.

IRENA, “World Energy Transitions Outlook: 1.5°C Pathway,” 2021. [Online]. Available: https://irena.org/publications/2021/March/World-Energy-Transitions-Outlook.

A. Kalair, N. Abas, M. S. Saleem, A. R. Kalair, and N. Khan, “Role of energy storage systems in energy transition from fossil fuels to renewables,” Energy Storage, vol. 3, no. 1, pp. 1–27, 2021, doi: 10.1002/est2.135.

K. Hansen, C. Breyer, and H. Lund, “Status and perspectives on 100% renewable energy systems,” Energy, vol. 175, pp. 471–480, 2019, doi: 10.1016/j.energy.2019.03.092.

H. Nugroho, S. Fei-Lu, and Firmansyah, “Developing renewable energy in developing countries: A lesson from Indonesia,” Energy Sources, Part B Econ. Plan. Policy, vol. 12, no. 4, pp. 318–325, 2017, doi: 10.1080/15567249.2015.1072599.

S. Kusch-Brandt, “Urban Renewable Energy on the Upswing: A Spotlight on Renewable Energy in Cities in REN21’s ‘Renewables 2019 Global Status Report,’” Resources, vol. 8, no. 3, p. 139, 2019, doi: 10.3390/resources8030139.

IRENA, “Renewable capacity statistics 2021,” 2021. [Online]. Available: https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021.

REN21, “Ren21,” 2020. [Online]. Available: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf.

F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1184–1194, 2004, doi: 10.1109/TPEL.2004.833453.

R. Panigrahi, S. K. Mishra, S. C. Srivastava, A. K. Srivastava, and N. N. Schulz, “Grid Integration of Small-Scale Photovoltaic Systems in Secondary Distribution Network - A Review,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3178–3195, 2020, doi: 10.1109/TIA.2020.2979789.

Z. A. Arfeen, A. B. Khairuddin, R. M. Larik, and M. S. Saeed, “Control of distributed generation systems for microgrid applications: A technological review,” Int. Trans. Electr. Energy Syst., vol. 29, no. 9, pp. 1–26, 2019, doi: 10.1002/2050-7038.12072.

Q. Li and P. Wolfs, “A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configuration,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320–1333, 2008, doi: 10.1109/TPEL.2008.920883.

S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292–1306, 2005, doi: 10.1109/TIA.2005.853371.

F. Z. Peng, “Z-Source Inverter,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504–510, 2003, doi: 10.1109/TIA.2003.808920.

J. Anderson and F. Z. Peng, “Four quasi-Z-Source inverters,” in IEEE Power Electronics Specialists Conference, 2008, pp. 2743–2749, doi: 10.1109/PESC.2008.4592360.

Y. Liu, H. Abu-Rub, and B. Ge, “Z-source/quasi-Z-source inverters: Derived networks, modulations, controls, and emerging applications to photovoltaic conversion,” IEEE Industrial Electronics Magazine, vol. 8, no. 4, pp. 32–44, 2014.

Y. Liu, B. Ge, H. Abu-Rub, and H. Sun, “Hybrid Pulsewidth Modulated Single-Phase Quasi-Z-Source Grid-Tie Photovoltaic Power System,” IEEE Trans. Ind. Informatics, vol. 12, no. 2, pp. 621–632, 2016, doi: 10.1109/TII.2016.2524561.

M. Meraj, S. Rahman, A. Iqbal, and L. Ben-Brahim, “Common Mode Voltage Reduction in a Single-Phase Quasi Z-Source Inverter for Transformerless Grid-Connected Solar PV Applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 2, pp. 1352–1363, 2019, doi: 10.1109/JESTPE.2018.2867521.

Y. Liu, B. Ge, H. Abu-Rub, and D. Sun, “Comprehensive Modeling of Single-Phase Quasi-Z-Source Photovoltaic Inverter to Investigate Low-Frequency Voltage and Current Ripple,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4194–4202, 2015, doi: 10.1109/TIE.2014.2384472.

Y. Liu, B. Ge, H. Abu-Rub, and F. Z. Peng, “Control System Design of Battery-Assisted Quasi-Z-Source Inverter for Grid-Tie Photovoltaic Power Generation,” IEEE Trans. Sustain. Energy, vol. 4, no. 4, pp. 994–1001, 2013, doi: 10.1109/TSTE.2013.2263202.

Y. Li, S. Jiang, J. G. Cintron-Rivera, and F. Z. Peng, “Modeling and control of quasi-z-source inverter for distributed generation applications,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1532–1541, 2013, doi: 10.1109/TIE.2012.2213551.

B. Ge et al., “An energy-stored quasi-Z-source inverter for application to photovoltaic power system,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4468–4481, 2013, doi: 10.1109/TIE.2012.2217711.

H. Abu-Rub, A. Iqbal, S. M. Ahmed, F. Z. Peng, Y. Li, and G. Baoming, “Quasi-Z-source inverter-based photovoltaic generation system with maximum power tracking control using ANFIS,” IEEE Trans. Sustain. Energy, vol. 4, no. 1, pp. 11–20, 2013, doi: 10.1109/TSTE.2012.2196059.

M. Zhu, K. Yu, and F. L. Luo, “Switched Inductor Z-Source Inverter,” IEEE Trans. POWER Electron., vol. 25, no. 8, pp. 2150–2158, 2010, doi: 10.1109/TPEL.2010.2046676.

M.-K. Nguyen, Y.-C. Lim, and G.-B. Cho, “Switched-Inductor Quasi-Z-Source Inverter,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3183–3191, 2011, doi: 10.1109/TIE.2017.2688964.

M. K. Nguyen, Y. C. Lim, and J. H. Choi, “Two switched-inductor quasi-Z-source inverters,” IET Power Electron., vol. 5, no. 7, pp. 1017–1025, 2012, doi: 10.1049/iet-pel.2011.0297.

V. Jagan, J. Kotturu, and S. Das, “Enhanced-Boost Quasi-Z-Source Inverters with Two-Switched Impedance Networks,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 6885–6897, 2017, doi: 10.1109/TIE.2017.2688964.

M. Abbasi, A. H. Eslahchi, and M. Mardaneh, “Two Symmetric Extended-Boost Embedded Switched-Inductor Quasi-Z-Source Inverter with Reduced Ripple Continuous Input Current,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 5096–5104, 2018, doi: 10.1109/TIE.2017.2779433.




DOI: https://doi.org/10.21831/elinvo.v6i1.40287

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Elinvo (Electronics, Informatics, and Vocational Education)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Our Journal indexed by:

ISSN 2477-2399 (online) || ISSN 2580-6424 (print)

View My Stats

Flag Counter