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Data center computing requires efficient GPU support, both in 

terms of functionality and power consumption. GPU performance 

efficiency can be reduced due to high power usage and reduced 

GPU work stability. So it requires an analysis of computational 

performance and power efficiency to improve performance and 

reduce power usage. Core voltage, core frequency, and memory 

timings are parameters that affect the efficiency of computing 

performance, power efficiency, and stability. Increasing 

computational efficiency and GPU power with the effect of 

modifying parameters can be done through the Basic Input-Output 

System (BIOS). This study analyzes the efficiency of 

computational performance by optimizing memory timings and 

analyzing power efficiency and stability by modifying the DVFS 

algorithm. Tests are carried out using computational benchmarks 

commonly used in data centers including the tessellation 

algorithm, rendering, image processing, pi calculation, image 

stitching, deep learning, molecular simulation, and N-body. The 

efficiency of computing performance and GPU power efficiency 

can be increased by optimizing memory timings and changing the 

voltage and frequency values on DVFS. Increased performance 

efficiency ranged from 33.3% to 66.7% and power efficiency 

increased from 19.9% to 32.6%. Modification of the DVFS voltage 

state can increase voltage stability and GPU core frequency 

stability. 
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  Komputasi pada Data center membutuhkan dukungan GPU yang 

efisien, baik dari segi kienrja maupu konsumsi daya. Efisiensi 

kinerja GPU dapat menurun dikarenkan penggunaan daya yang 

tinggi dan penurunan kestabilan kerja GPU. sehingga dibutuhkan 

analisis efisiensi kinerja komputasi dan daya untuk meningkatkan 

kinerja dan menurunkan penggunaan daya. Tegangan inti, 

frekuensi inti, dan timing memori merupakan parameter yang 

berpengaruh pada efisiensi kinerja komputasi, efisiensi daya, dan 

kestabilan. Peningkatan efisiensi komputasi dan daya GPU 

dengan modifikasi parameter yang berpengaruh dapat dilakukan 

melalui Basic Input-Output System (BIOS). Penelitian ini 

melakukan analisis terhadap efisiensi kinerja komputasi dengen 

optimasi timing memori, analisis efisiensi daya dan kestabilan 

dengan modifikasi algoritma DVFS. Pengujian dilakukan dengan 

menggunakan benchmark yang berisi komputasi yang biasa 

digunakan pada data center diantaranya algoritma tessellation, 

render, pemrosesan citra, kalkulasi pi, image stitching, deep 

learning, simulasi molekul, dan N-body.  

https://journal.uny.ac.id/publications/jraee
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  Komputasi pada Data center membutuhkan dukungan GPU yang 

efisien, baik dari segi kienrja maupu konsumsi daya. Efisiensi 

kinerja GPU dapat menurun dikarenkan penggunaan daya yang 

tinggi dan penurunan kestabilan kerja GPU. sehingga dibutuhkan 

analisis efisiensi kinerja komputasi dan daya untuk meningkatkan 

kinerja dan menurunkan penggunaan daya. Tegangan inti, 

frekuensi inti, dan timing memori merupakan parameter yang 

berpengaruh pada efisiensi kinerja komputasi, efisiensi daya, dan 

kestabilan. Peningkatan efisiensi komputasi dan daya GPU 

dengan modifikasi parameter yang berpengaruh dapat dilakukan 

melalui Basic Input-Output System (BIOS). Penelitian ini 

melakukan analisis terhadap efisiensi kinerja komputasi dengen 

optimasi timing memori, analisis efisiensi daya dan kestabilan 

dengan modifikasi algoritma DVFS. Pengujian dilakukan dengan 

menggunakan benchmark yang berisi komputasi yang biasa 

digunakan pada data center diantaranya algoritma tessellation, 

render, pemrosesan citra, kalkulasi pi, image stitching, deep 

learning, simulasi molekul, dan N-body. Efisiensi kinerja 

komputasi dan efisiensi daya GPU dapat ditingkatkan dengan 

optimasi timing memori dan pengubahan nilai tegangan dan 

frekuensi pada DVFS. Peningkatan efisiensi kinerja berkisar 

33,3% hingga 66,7% dan efisiensi daya meningkat 19,9% hingga 

32,6%. Modifikasi state tegangan DVFS dapat meningkatan 

kestabilan tegangan dan kestabilan frekuensi inti GPU.  
This is an open access article under the CC-BY-SA license. 

 

1. Introduction 

The data center was once considered only as a large place for data collection and just a place for 

data traffic. Data centers are now changing from providing storage only to providing computing 

services. Science and engineering computing is currently being done in Data centers, such as Deep 

learning, molecular simulation, image processing, and physical calculation simulation. Increased 

computational burden on the data center, requires a device that can speed up the computing process 

in the Data center. GPU is one of the accelerator solutions available today for a Data center [1].  

The computing paradigm for the application of science and engineering has now shifted. The 

Central Processing Unit (CPU) which used to be the computational backbone for the application of 

science and engineering, has now been assisted or even replaced by a Graphic Processing Unit 

(GPU). The CPU is considered no longer able to perform all computing tasks quickly and efficiently, 

especially for science and engineering applications. This is supported by the presence of GPGPU 

[2]. 

GPU which is used in data centers, has considerable power requirements. This is due to the 

number of core processors used on GPUs numbering hundreds to thousands. The impact of the high 

power requirements is the emergence of high temperatures on the GPU chip. High power can cause 

a decrease in GPU computing performance efficiency [3]. In addition to decreasing performance, 

temperature, and high power consumption, it can disrupt the stability of the work of the GPU while 

handling computing [4]. Disturbed stability can cause data to be damaged error, or lost. 

Data centers require GPUs that have fast performance, are stable at high computational durations 

that are long enough, but still have relatively low power to avoid high temperatures caused by power 

dissipation. One alternative to reduce power usage is by lowering the GPU voltage, decreasing the 

GPU core frequency, and optimizing memory timings. 

This can be done by using one of the settings in the GPU kernel [5], but this method still has 

challenges where there are often voltage or frequency drops that still do not work according to the 

configuration given. So that it often disrupts work stability. Then a voltage modification method, 

http://creativecommons.org/licenses/by-sa/4.0/
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timing, and GPU working frequency are needed. For the GPU to produce more stable, power-

efficient performance, it can reduce GPU working temperature in computational intensive, such as 

its use in the data center. 

The Basic Input-Output System (BIOS) is used in hardware as part of initialization. All states 

on the hardware will be initialized when the hardware boots. The BIOS has more access parameters 

than the kernel. This includes state voltage, voltage value, frequency value on DVFS, memory 

timings, and work frequency. Power efficiency and stability can be increased by changing the DVFS 

state and voltage values. The efficiency of computational performance can be improved by 

optimizing memory timing.  

Seeing the problem of GPU computing performance efficiency in the data center which can be 

reduced by high power consumption and reduced GPU stability [6], this study will analyze the 

efficiency of computing performance and GPU power by timing optimization memory, changing the 

DVFS algorithm to the core voltage state, core voltage values and core frequency values embedded 

in the BIOS. This study focuses on analyzing the efficiency of computing performance, power 

efficiency, and stability of performance. The efficiency of computational performance, power 

efficiency, and stability are expected to be improved for computing using the GPU in the data center. 

2. Method 

This section explains how to implement BIOS optimization via DVFS and timing optimization. 

This section also explains the hardware and software used in this research as well as test methods 

that demonstrate computing stability and performance. 

2.1 Overall Research Methods 

The efficiency of GPU computing performance in this study will be improved by maintaining 

performance together by reducing GPU power consumption while increasing GPU stability. This is 

done to improve the efficiency of computing performance along with increasing the efficiency of 

power consumption with stable performance. Power efficiency will be improved by modifying the 

DVFS algorithm, both on state voltage, voltage value, and core frequency values. Computing 

performance will be maintained by optimizing memory timings. GPU computing performance can 

be measured by providing a benchmark containing the computational load that is processed to 

produce a measure of performance. The depiction of GPU computing performance in the data center 

requires a benchmark that contains computing commonly used in data centers such as pi digit 

calculations, 3D rendering and tessellation, molecular simulations, n-body simulations, and digital 

image processing. This research will use several algorithms that represent each of these 

computations. Computational benchmarks will be assisted by benchmarking software GPU power 

requirements in the computational process can be measured by recording GPU Power draw data 

when running computational benchmarks. Stability can be measured by recording core voltage and 

core frequency data from VRM and GPU cores. 

2.2 Hardware Spesification Used 

The hardware system that will be used in this study has the following specifications : 

a. CPU AMD Ryzen 9 7900X 12 cores 24 threads running on 4.7 GHz  

b. Motherboard AMD B650 Platform 

c. RAM 64 GB (16GB X 4) DDR5 4800 MHz  

d. Two GPUs AMD RX 6800 16GB GDDR6 

e. Operating System: Windows 10 Pro 64-bit.  

2.3 DVFS Optimization 

The voltage and frequency at the GPU core are regulated using a power management algorithm 

on a computer component that is popular today, DVFS. DVFS works by adjusting the frequency and 

voltage at the GPU core to the given computational load. This is done so that the core frequency and 

voltage can adapt to the given load conditions to increase power efficiency [7].  
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DFVS in a BIOS is embedded in the GPU in the form of a voltage-state state setting. This state 

of voltage and frequency is a reference for the GPU kernel to carry out voltage and frequency 

adaptations. Reducing state frequency and voltage is done through the BIOS, by writing the state 

and value that you want to implement on the GPU. 

Changing the DVFS rule is done at the voltage state. DVFS changes are expected to increase 

power efficiency and stability which will impact on improving the efficiency of computing 

performance [8]. Unstable voltage can be caused by the use of a voltage state where each state is too 

close. The voltage at the core is the main parameter in maintaining the frequency that runs at the 

core. The voltage state influences the power used and the frequency that can run at the GPU core. 

State voltage will be changed to less. GPU on default DVFS applies eight state voltages. State 

voltage will be converted into three voltage states, to accommodate idle state, mid-power state, and 

high-performance state 

 

 

Fig. 1. DVFS modification flowchart 

Many data center computations make the GPU work in two states, namely idle state, when not 

accepting computational loads, and high performance states when given high computational loads. 

This reduction in voltage state is expected to increase core and voltage frequency stability when 

given high computational loads to improve performance efficiency and reduce input power. The 

flow of changes in the voltage state of the DVFS is shown in Figure 1 

2.4 Voltage and Frequency High-Performance State Tuning 

Modification The state voltage in the DVFS algorithm requires a fixed voltage value for each 

frequency pair. Voltage states 1 to 7 on default DVFS have a variable value, only the state voltage 

0 has a fixed value. Three voltage values are needed to meet the needs of three DVFS voltage states. 

Assigning values to v0 will use the value v0 on the default DVFS. V2 value or upper voltage state 

will be taken based on the highest voltage reading from the kernel and then undervoled by 10-15%. 

This limit is given because the safe undervolting limit for computing use is 15-20%.  
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Fig. 2. Frequency tuning flowchart 

Tuning is done on the kernel by scanning automatically through software, so it can be 

determined how much the undervolt can be done which will then be written on DVFS. The value v1 

is the result of two from the difference between v0 and v2. Undervolting is done to produce lower 

voltage input at the GPU core so that the core power output can be lowered The upper frequency 

limit will be lowered to accommodate undervolting processes at the upper voltage state. Frequency 

tuning will be done on the kernel by automatic scanning through software with a 5% reduction limit. 

How it works tuning the upper limit of frequency and voltage using the scanning seen in the 

flowchart of Fig. 2. 

The application of voltage and frequency values to be used at the highest state or state three will 

be determined by the tuning method. The other state, namely state one will follow the default voltage 

state zero in the default BIOS, and state two will be the difference between state one and three 

divided by two. Tuning is done by adjusting the frequency according to the voltage that want to 

achieve. The tuning process flowchart is shown in Fig. 2. The lowered voltage will result in the need 

for a decrease in frequency, so this study provides a limit of a decrease in the maximum frequency 

of 5% with a reduction in voltage targeted at 10% to 15%. 

2.5 Memory Timing Optimization 

Memory timing in the BIOS is in the form of a microcode as shown on the right side of Fig. 2. 

The microcode contains configuration timings at each work frequency level. The higher the 

frequency that is run, the timings used will be looser. The looser the memory timing, the slower the 

performance. Higher frequency states certainly have more loose timings, as seen in Figure 3. Timing 

optimization is done by utilizing each state's timing. Microcode Timing at lower frequency states 

will be included at higher frequency states. This is intended to get high frequencies with tight 

timings. Increased memory computation performance with a small power increase [9]. 
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Fig. 3. Memory timing microcode 

2.6 Stability Test and Computation Performance Test 

Stability testing is done by providing a computational load on the GPU. Computation given as 

a stability test is compute-intensive and memory-intensive. Compute intensive will burden the GPU 

core with the intensity of the use of high GPU cores and intensive memory computing will burden 

memory with computing that requires high memory allocation. Computing that meets compute-

intensive and also memory-intensive one of them is 3D image rendering, Tessellation 3D computing, 

and Deep Learning Model [10]. Computing that is run will be facilitated using software to provide 

the computations tested. 

The stability test was used also to see the effect of changing the state voltage on the DVFS 

method. Reducing the voltage state is expected to increase stability by being able to adapt voltage 

based on 3-state voltage and reduce voltage and frequency drop when given a high computational 

load. Benchmarking is done to see the performance magnitude of a computing device. 

Benchmarking will be used to see how much GPU computing performance. Benchmarking will be 

done by providing computing based on computing in the data center. Tests are carried out using 

computational benchmarks commonly used in data centers including the tessellation algorithm, 

rendering, image processing, pi calculation, image stitching, deep learning, molecular simulation, 

and N-body. Benchmarking software for each computing load will also acquire GPU computing 

performance data. 

3. Result and Discussion 

3.1 DVFS and Timing Optimization Result 

The DVFS modification produces three state voltages and eight state DVFS frequencies, and 

memory timing optimization by tightening 2 steps tighter. The best upper limit of the DVFS voltage 

produced is the lowest voltage that runs with the upper limit of the highest core frequency. 

The modified DVFS results in three state voltages with a value of each that is read in the BIOS 

reader of 800 mV, 900 mV, and 975 mV shown in Fig. 4, with readable values of sensors namely 

825 mV, 925 mV, and 1025 mV. The upper limit of the core frequency is 1210 MHz down by 

50MHz or 4% of the default frequency value. A decrease in the upper limit of the core voltage read 

by the sensor in the log data is 150mV or decreases by 12.8% from the upper limit of the default 

voltage. Memory timing optimization is 2 steps higher without increasing memory voltage. 
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Fig. 4. State reduction and core frequency tuning result 

3.2 Stability Test Analysis 

Table 1 shows the modification of DVFS capable of increasing the level of stability compared 

to the default condition. Percentage percentages increased by 1.6% in 3D rendering computing. The 

difference is fairly insignificant but can describe the DVFS modification can achieve the same level 

of stability or even more than the default condition. DVFS modification also shows stable 

performance by being able to pass the test of stability in 3D tessellation computing. 

Table 1. Table 1.  Stability test result 

3D Render Stability Test 3D Tessellation Stability Test 

Condition Result Condition Result 

Default 98.1% Default Pass 

Modified 99.7% Modified Pass 

 

The difference in the results of the stability of the default condition and after modification of 

DVFS in the 3D rendering computation test was due to a small difference in the stability of the 

framerate produced during the testing process. The 3D rendering stability test works by providing 

the workload on the GPU in the form of moving animated image frames, where the output is a series 

of images. Stability is measured by changes in frame rate. A decrease in framerate will reduce the 

level of stability. The decrease in framerate is caused by a decrease in core frequency as the main 

working parameter of the stability test. Further analysis of the effect of DVFS modification will be 

elaborated on the results of core voltage and frequency readings. 

3.3 GPU core voltage stability analysis 

The difference in the results of the stability of the default condition and after modification of 

DVFS in the 3D rendering computation test was due to a small difference in the stability of the 

framerate produced during the testing process. The 3D rendering stability test works by providing 

the workload on the GPU in the form of moving animated image frames, where the output is a series 

of images. Stability is measured by changes in frame rate. A decrease in framerate will reduce the 

level of stability. The decrease in framerate is caused by a decrease in core frequency as the main 

working parameter of the stability test. Further analysis of the effect of DVFS modification will be 

elaborated on the results of core voltage and frequency readings. 
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Fig. 5. Core voltage reading at 3DMark stability test 

The voltage is capable of meeting the load given with the Modified DVFS three-state voltage 

shown in Fig. 5. The voltage can adapt to three states, namely at 825 mV, 925 mV, and 1025 mV. 

Look also at Figure 5 DVFS with three state voltages capable of increasing the stability of the core 

voltage by lowering the ripple when the GPU is given a test load. The ripples produced are only 25 

mV compared to the default BIOS that uses eight DVFS states which produce ripples of 120 mV. 

DVFS with fewer state voltages can adapt more quickly to systems that run long in idle state or old 

with high-performance state as done in the stability test. Faster adaptation due to fewer state 

voltages, so that the transition between idle state or power state medium to high-performance state 

is faster by passing fewer state stages. Voltage ripples can also be reduced by reducing the voltage 

state on this DVFS, by minimizing voltage changes due to changes in the computational load 

GPU core frequency stability analysis 

Frequency ripple occurs in the default condition before modification of the DVFS voltage state 

when the stability test is performed, but does not occur after the DVFS voltage state is modified. 

Frequency ripples that occur under default conditions occur up to 40 MHz as shown in graph Figure 

6. The core frequency ripples are influenced by the GPU core voltage.  

The drop voltage will cause DVFS under default conditions to adjust the core frequency with a 

readable voltage level. DVFS with eight state voltages has a narrower frequency difference in each 

state so that the voltage drop will automatically cause a drop in the core frequency. DVFS with three 

state voltages has a wider voltage range for each frequency state, so that with a slight ripple on the 

voltage it will not cause a decrease in core frequency. 

The core frequency is directly related to GPU computing performance. Decreasing core 

frequency values will have an impact on the decline of most computing performance. Drops that 

occur will reduce performance stability and reduce the efficiency of computational performance, 

therefore increasing core frequency alignment is one step to improve the efficiency of GPU 

computing performance. 
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Fig. 6. Core frequency reading at 3DMark stability test 

3.4 Computation Test Result and Analysis 

Computational science benchmarks in this research use computation, namely: computational 

algorithm spigot for digit pi calculation through GPUPI software, computational simulation of 

molecule folding open MM by FAHBenchmark, computation of N-Body simulation by 

Compubench, execution performance of sobel operator algorithm and histogram equalization 

algorithm through Geekbench , computational image stitching, SIFT algorithm by Agisoft 

photoscan, and 3D rendering computation by 3DMark Fire Strike software, and Deep learning using 

Convolutional Neural Network (CNN).  

Table 2. Benchmark results 

Benchmark 
Result Memory 

Allocation 

(MB) 

Difference 

(%) Default BIOS Optimized BIOS 

Spigot Algorithm 989 seconds 1029 seconds 166 -4.0 

OpenMM 63.2255 points 61,5068 points 120 -2.7 

GeekBench 118663 points 116162 points 320 -2.1 

N-Body Simulation 128k 
332.169 

iteration/s 

340.697 

iteration/s 

520 
2.6 

N-Body Simulation 1024k 
51.2394 

iteration/s 

52.5324 

iteration/s 

650 
2.5 

3D Render 24166 points 23893 points 1500 -1.1 

Image Stitching (669 

Gambar) 
1211 seconds 1217 seconds 

540 
- 0.1 

Image Stitching (129 

Gambar) 
141 seconds 141 seconds 

620 
0 

VGG16 (CNN) 16.8 FPS 19.6 FPS 7616 16.7 

VGG19 (CNN) 14.9 FPS  16.3 FPS 7571 9.4 

MobileNet (CNN) 64.0 FPS 70.6 FPS 4247 10.3 

     

The results of computational performance in Table 2 show a variety of computational 

performance response responses to optimizing memory timings and decreasing core frequencies. 

The minus value in Table 2 shows a decrease in computational performance after optimization of 
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memory timings with decreasing frequency values, while a positive value difference indicates an 

increase in computing performance.       

The spigot algorithm is the most effective computing effect on the decrease in core frequency 

and does not seem to be affected by the optimization of memory timings. N-body simulation is 

computing that has increased performance even though the core frequency has decreased. Based on 

the percentage increase, the n-body simulation shows the effect of optimizing the memory timing at 

the most increase in performance. Computing other than the N-body simulation, decreased 

performance due to a decrease in core frequency, but the decrease in performance was not as large 

as the percentage decrease in core frequency. This shows the effect of optimizing memory timings 

on computing performance. 

The tendency of the magnitude of the effect of core or memory on computing can be classified 

by looking at changes in performance compared to memory usage as shown in Table 2. High 

memory usage with positive performance changes or indicates an increase in performance with the 

optimization of memory timings shows the tendency of memory bound. Low memory usage with 

negative performance changes indicates a decrease in performance where the effect of core 

frequency reduction is greater than the optimization of memory timings showing core bound 

tendency. Memory timing optimization will be optimal if the benchmark has a large GPU memory 

allocation and has low computational intensity so that the effect of data transfer speed on memory 

will be higher. Data transfer in memory is very dependent on memory frequency and memory 

timings. 

3.5 GPU Output Power and Temperature Analysis 

The GPU core is the component that consumes the most power from the entire GPU board. The 

decrease in core power consumption is due to a decrease in the upper limit of the GPU core frequency 

on DVFS. Decreasing the upper limit value of voltage in DVFS which is used as a voltage value that 

runs on high performance state is very influential on GPU power usage. 

Table 3. GPU power draw and output temperature 

Benchmark 

Power 

Default 

BIOS 

Power 

Optimized 

BIOS 

Diff 

(%) 

Temperature 

(Celcius) - 

Default BIOS 

Temperature 

(Celcius) - 

Optimized 

BIOS 

Diff 

(%) 

Spigot Algorithm 

Both GPUs 

109.8 76.1 -30.7 73.6 61.4 -16.6 

105.6 77.0 -27.1 64.2 56.2 -12.5 

OpenMM 102.2 70.7 -30.8 60.4 52.8 -12.6 

Image processing 86.2 58.4 -32.3 43.0 39.6 -7.9 

N-Body 116.2 82.1 -29.3 57.0 51.0 -10.5 

3D Render (GPU1) 166.8 118.5 -29.0 68.0 58.4 -14.1 

3D Render(GPU 2) 161.4 118.7 -26.5 62.6 54.6 -12.8 

Image Stitching 

669 Images Both 

GPUs 

 

162.1 112.7 -30.5 88.0 73.0 -17.0 

145.5 110.6 -24.0 79.0 67.0 -15.2 

Image Stitching 

129 images Both 

GPUs 

 

156.0 113.1 27.5 79.0 66.0 -16,5 

150.5 103.1 31.5 72.0 61.0 -15.3 

VGG16 175.7 122.6 -30.2 58.7 52.0 -11.4 

VGG19 174.0 120.4 -30.8 60.3 52.0 -13.8 

MobileNet 115.0 80.9 -29.7 49.3 45.7 -7.3 
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Table 3 shows a decrease in core voltage and a decrease in core frequency on DVFS which can 

reduce overall GPU power consumption in all computing power outputs. 

It can be seen in Table 3 that there is a decrease in the output power modified by the DVFS 

voltage value compared to the default conditions in all tests which are marked with a percentage that 

is minus. Core voltage reduction has been proven to reduce the power drawn by the GPU which 

impacts system power down. GPU power ranges from 24.0% to 32.3% and system power supply 

ranges from 15.5% to 25.7%. System power is measured in the state of the system in high-

performance conditions. 

The varying power consumption values in Table 3 show the computational intensity performed 

at the GPU core. The higher computational intensity will increase the power drawn by the GPU core. 

The many calculations performed and data transactions will affect power. The core requires higher 

power when allocation, data size, transaction intensity, and calculation on compute units on the GPU 

core increases. The variety of power consumption can show the size of the intensity of each 

computation. 

3.6 Performance per Watt 

Performance per watt is a measure to see how much the efficiency of a computer component in 

carrying out its functions. Performance per watt in this study is used as a measure of the efficiency 

of the GPU. The purpose of using performance measures per watt is to see how far the efficiency of 

BIOS optimization increases. Performance per watt is calculated based on the score of each 

benchmark divided by the output power. Changes in performance per watt are written as percentages. 

The power size used is GPU power. 

Table 4. Performance per watt 

Benchmark 
Performance Per Watt Difference 

(%) Default BIOS Optimized BIOS 

Spigot Algorithm 150137 digits/s/W 203024 digits/s/W 35.2 

OpenMM 0.62 points/W 0.87 points/W 40.3 

Image Processing 1377 points/W 1989 points/W 44.4 

N-Body Simulation 

128K  
2.859 iteration/s/W 4.150 iteration/s/W 45.2 

N-Body Simulation 

1024K 
0.441 iteration/s/W 0.640 iteration/s/W 45.1 

VGG16 (CNN) 0.096 FPS/W 0.160 FPS/W 66.7 

VGG19 (CNN) 0.085 FPS/W 0.135 FPS/W 58.8 

MobileNet (CNN) 0.557 FPS/W 0.873 FPS/W 56.7 

3D Render  73.6 points/W 100.7 points/W 36.8 

Image Stitching 669 

images  
0.0018 images/s/W 0.0024 images/s/W 33.3 

Image Stitching 129 

images  
0.0030 images/s/W 0.0041 images/s/W 36.7 

 

Increased performance per watt in all tests carried out as shown in table 4. Benchmark 

computing computing shows an increase in efficiency of 35.2% to 45.2%. Deep learning benchmarks 

have increased efficiency by 45.8% -66.7%. The lowest increase occurred in the 3D rendering 

benchmark by 3DMark software, which amounted to 33.3%. The increase in efficiency was due to 

a combination of power losses caused by core frequency tuning and a decrease in core voltage 

coupled with GPU performance that was successfully maintained thanks to memory timing 

optimization. 

4. Conclusion 

DVFS and memory timing Optimization can increase the stability of GPU core voltage and 
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frequency, decrease the temperature from 7.4% to 17%, decrease power from 19.9% up to 32.6%, 

and increase the GPU efficiency based on performance per watt from 33.3% up to 66.7% for data 

center applications. 
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