PENGARUH PROSEDUR PENEPUNGAN UBI KAYU (Manihot esculenta Crantz) TERHADAP KADAR PATI DAN KUALITAS TEPUNG UBI KAYU

Oleh:
Wika Rinawati
Staf Pengajar FT UNY

Abstract
This research is about flouring procedures, which do with three ways. First (grating and drying). Second (grating, parting of starch and waster). Third (grating and drying of waster). Goals from this research are: 1) to know cassava’s flour starch based on difference of flouring procedure I, II, and III, 2) to know impact of flouring procedure difference I, II, and III on cassava’s flour starch compared with fresh cassava, and 3) to know the impact of flouring procedure difference I, II and III on quality (colour and smell) cassava’s flour. Research were did at Food Biochemical Laboratory Farm Technology Gadjah Mada University to analyze flour and Culinary Laboratory, Family Life Education, Technique Faculty, Yogyakarta State University, where flour product was made. Research start with make a starch with starching procedure I, II, and III and continued with analyzing cassava and sensoric test of cassava’s flour quality which depend on colour and smell. The research show that: 1) cassava’s flour starch in I way 86.69%, II is 87.94%, III is 87.14%, 2) there is impact of flouring procedure on cassava’s flour starch compared with fresh starch. There is no difference impact of flouring procedure I, II, and III on cassava’s starch flour at 1% significantly. 3) There is impact on flouring procedure difference on colour and smell cassava’s flour at 1% significantly.

Key words: Manihot Esculenta Crantz Flouring Procedure, Amount of Starch, Flour Quality.

PENDAHULUAN
Diversifikasi pangan merupakan program pemerintah yang sudah digalakkan untuk memacu masyarakat agar menghasilkan


Proses pembuatan tepung ubi kayu sangat bervariasi, dengan hasil tepung yang tentunya berbeda kualitasnya. Menurut Standart Industri Indonesia (SII) syarat bahan pangan menjadi tepung adalah kandungan karbohidrat tinggi dan mempunyai kadar pati minimal 75% (anomim, 1990). Penentuan kualitas tepung yang dihasilkan
dilihat dari beberapa segi, yaitu dari segi fisik yang meliputi ukuran, warna, bentuk, dan tekstur. Dari segi gizi berkaitan dengan derajat ketersediaan biologisnya (degree of bioavailability). Dari segi citarasa mencakup rasa dan warna, dan dari segi keamanan mencakup daya tahan, kandungan kimia, dan lain-lain.

Berdasar uraian di atas, menimbulkan beberapa permasalahan berikut ini.
1. Berapakah kadar pati tepung ubi kayu berdasarkan pada perbedaan prosedur penepungan cara I (pemarutan dengan pengeringan), cara II (pemarutan, pemisahan pati dan ampas), cara III (pemarutan dan mengeringkan ampas).
2. Adakah pengaruh perbedaan prosedur penepungan cara I, II, dan III terhadap kadar pati tepung ubi kayu dan dibandingkan dengan ubi kayu segar?
3. Adakah pengaruh perbedaan prosedur penepungan cara I, II, dan III terhadap kualitas (warna dan aroma) tepung ubi kayu?

Prosedur Penepungan Ubi Kayu
Ubi kayu (Manihot esculenta Crantz) berasal dari akar yang berubah bentuk dan fungsinya sebagai tempat penyimpanan cadangan makanan. Biasanya ubi kayu berbentuk bulat panjang, dagingnya berwarna putih gelap atau kuning gelap.
Ubi kayu sebagai tanaman pangan lokal tentunya mempunyai kelebihan dan kelemahan. Kelebihannya seperti tinggi kandungan karbohidrat dan vitamin C, selain itu masa panen tidak diburu waktu sehingga biasa dijadikan lumbung hidup. Sedangkan kelemahan ubi kayu mempunyai kandungan protein dan lemah sangat rendah, mengandung racun glukosa sianogenik yang sewaktu dihidrolisis dapat menghasilkan asam sianida (HCN) dan glukosa (Soebiyanto PT, 1993). Selain itu, ubi kayu akan menjadi busuk dan mudah rusak bila terlalu lama disimpan tanpa mendapat perlakuan yang memadai, minimal 2-5 hari setelah panen segera digunakan agar tidak terjadi susut pasca panen.

HCN, menurut Mark (1967) merupakan cairan yang mudah bergerak, tidak berwarna, berbau menyengat, berasa pahit, dan mempunyai titik didih 25,7°C. Ciri-ciri ubi kayu yang berkadar HCN tinggi adalah rasa umbi pahit, jika dipotong warna umbi berubah menjadi biru. Kandungan HCN dalam umbi jika tidak terlalu tinggi dapat hilang dengan cara digoreng, dikukus, direbus, dijemur, dicuci dalam air yang mengalir atau diolah menjadi produk makanan. Sedangkan untuk ubi kayu yang kandungan HCN-nya tinggi dapat dihilangkan dengan cara pencucian, perendaman, proses fermentasi, pemanggangan, pemarutan, dan pengeringan.

Pengaruh Prosedur Penepungan Ubi Kayu terhadap Kadar Pati dan Kualitas Tepung Ubi Kayu (Wika Rinawati)

Ubi kayu yang mengandung HCN tinggi digunakan sebagai bahan industri. Salah satu produk ubi kayu yang sedang banyak diteliti adalah tepung ubi kayu. Tepung mempunyai pengertian suatu bahan yang dikerlingkan dan digiling. Tepung berbeda dengan pati karena pati diperoleh dengan jalan pengendapan. Tepung ubi kayu dapat ditempuh dengan berbagai prosedur. Dari berbagai prosedur penepungan diharapkan dapat menemukan prosedur penepungan ubi kayu yang efektif, efisien ekonomis, dan sesuai dengan standar tepung.

Winarno FG (1993) pengeringan dapat merubah warna tepung ubi kayu menjadi hitam. Perubahan tersebut kemungkinan disebabkan oleh enzim polifenolase yang terdapat pada lendir ubi kayu, jika enzim tersebut kontak dengan udara maka akan merubah senyawa polifeno (tannin) senyawa yang berwarna hitam.

METODE PENELITIAN

Penelitian ini merupakan penelitian eksperimen yang dilaksanakan di Laboratorium Kimia dan Biokimia Pangan Teknologi Pertanian UGM, sebagai tempat melaksanakan analisis kadar pati dan Laboratorium Boga PKK FT UNY, sebagai tempat membuat produk tepung ubi kayu.

Bahan dan alat yang digunakan terdiri dari bahan untuk membuat tepung ubi kayu yang masih segar dan berwarna putih, dan bahan untuk menganalisis kadar pati yaitu larutan NaOH 45%, Natrium karbonat anhidrat, Natrium bikarbonat, dan Natrium sulfat anhidrat. Alat penelitian yang digunakan terdiri dari alat untuk proses pembuatan tepung ubi kayu yaitu: blender merk Crown dengan kecepatan 3, kain kassa, nampan dari aluminium, dan ayakan. Alat untuk menganalisis kadar pati yaitu: timbangan dengan ketelitian 0,1mg, gelas piala 250ml, pipet, dan erlenmeyer.

Validitas internal yang dapat diukur adalah (1) Jenis varietas ubi kayu sangat banyak sehingga sulit menentukan varietas ubi kayu yang digunakan, dan (2) Ubi kayu yang ada di pasaran sangat sulit dideteksi jenisnya, masa panen, dan lama penyimpanan, yang dapat mempengaruhi kualitas tepung ubi kayu yang secara kemis tidak dapat diukur dengan indera penglihatan saja.

Validitas eksternal adalah (1) Semua jenis ubi kayu dapat diolah menjadi tepung ubi kayu, baik umbi manis atau umbi pahit, dan (2) Proses pengeringan dapat dilakukan dengan metode pengeringan alamiah (sun drying) atau metode pengeringan buatan (artificial drying).

Validitas kontrol adalah ubi kayu segar sebagai kontrol ubahan kadar pati pada prosedur penepungan cara I yaitu pemarutan dengan pengeringan, cara II yaitu pemarutan, pemisahan
pati dan ongkok ubi kayu, dan cara III yaitu pemarutan dan mengerinking ampas.

Tahap-tahap penelitian yang dilakukan bertujuan untuk mengetahui kadar pati dan kualitas tepung ubi kayu (warna dan aroma). Tahap pertama dimulai dari pembuatan tepung ubi kayu dengan pengolahan ubi kayu segar dengan menggunakan 3 cara yaitu: cara I, II, dan III. Hasil penepungan dilanjutkan dengan analisis kadar pati yang menggunakan metode Direct Acid Hydrolysis Method (AOAC). Tahap selanjutnya pengujian sensoris terhadap kualitas tepung ubi kayu (warna dan aroma), menggunakan panelis terpilih sebanyak 20 orang dari mahasiswa Tata Boga angkat 1995 dan 1996 Jurusan PKK FT UNY.


Gambar 1. Prosedur Penepungan Cara I
Keterangan:
Perlakuan awal ubi kayu yaitu pengupasan dan pencucian. Pencucian dilakukan dalam air yang mengalir sampai bersih atau mengkerat ubi kayu yang sudah dikuas dengan pisau, kemudian dicuci hingga bersih sehingga lendir yang terdapat pada umbi larut dalam air. Tahap kedua, pemarutan yang bertujuan memudahkan proses penggilingan dan mempercepat proses pengeringan. Pengeringan menggunakan pengeringan alami (sun drying) selama 4 jam mulai jam 10.00-14.00 WIBB. Selama proses pengeringan berlangsung sesekali diberi-beri agar proses pengeringan merata dan cepat kering. Minimal pengeringan dilakukan selama 2 hari agar tidak terjadi penyimpanan mutu tepung terutama pada kualitas tepung. Tahap terakhir adalah penggilingan dan pengayakan untuk menghasilkan tepung ubi kayu dengan butiran tepung yang sama.

Kedua, prosedur penepungan cara II yaitu pemarutan, pemisahan pati dan ongkok ubi kayu. Diagram alirnya dapat dilihat pada gambar 2.
Pengaruh Prosedur Penepungan Ubi Kayu terhadap Kadar Pati dan Kualitas Tepung Ubi Kayu (Wika Rinawati)

Ketiga, prosedur penepungan cara III yaitu pemarutan dan mengeringkan ampas. Diagram alirnya dapat dilihat pada gambar 3.

Gambar 2. Prosedur Penepungan Cara II

Keterangan:

Gambar 3. Prosedur Penepungan Cara III

Keterangan:
Disain penelitian yang digunakan dalam penelitian ini terbagi menjadi dua, yaitu pertama disain penelitian untuk menentukan kadar pati tepung ubi kayu dan ubi kayu segar (kontrol), dengan menganalisis ubi kayu segar dan tiap prosedur penepungan (cara I, II, dan III) pada kadar pati dan kadar air sebanyak tiga kali ulangan.

Kedua, disain penelitian untuk menentukan kualitas tepung ubi kayu. Kualitas tepung ubi kayu yang diukur adalah tingkat keputihan dan aroma terhadap tiap-tiap prosedur penepungan (cara I, II, dan III) dengan menggunakan panelis sebanyak 20 orang.

Teknik analisis data yang dilakukan pada pengaruhan perbedaan prosedur penepungan ubi kayu terhadap kadar pati ubi kayu menggunakan Analisis Variansi Satu Jalur (Anava), dan pengujian sensoris pada pengaruh perbedaan prosedur penepungan terhadap kualitas tepung ubi kayu (aroma dan warna) menggunakan ranking test, jika ada perbedaan dilanjutkan dengan uji Tukey’s.

HASIL DAN PEMBAHASAN

Hasil analisis kadar pati terlebih dahulu disetarakan pada kadar air 12,5% yang dilanjutkan dengan analisis pada pengaruh perbedaan prosedur penepungan terhadap kadar pati tepung ubi kayu yang tertera pada tabel 1.

<table>
<thead>
<tr>
<th>Sb Var</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F calc</th>
<th>F Tab 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antar sampel</td>
<td>3</td>
<td>427.5</td>
<td>142.5</td>
<td>50.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>22.4</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>449.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 1 menunjukkan bahwa harga Fhit lebih besar dari Ftab, maka terdapat pengaruh yang sangat signifikan antara perbedaan prosedur penepungan terhadap kadar pati tepung ubi kayu. Adanya pengaruh ini dilanjutkan dengan uji lanjut Tukey’s yang tertera pada tabel 2.

<table>
<thead>
<tr>
<th>Perbandingan Perluakan</th>
<th>Harga Perbandingan</th>
<th>Beda Taraf 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cara I dengan ubi kayu segar</td>
<td>13.19</td>
<td>3.90</td>
</tr>
<tr>
<td>Cara II dengan ubi kayu segar</td>
<td>14.44</td>
<td></td>
</tr>
<tr>
<td>Cara III dengan ubi kayu segar</td>
<td>13.64</td>
<td></td>
</tr>
<tr>
<td>Cara I dengan cara II</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>Cara I dengan cara III</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Cara II dengan cara III</td>
<td>0.79</td>
<td></td>
</tr>
</tbody>
</table>

Dari tabel 2 dapat diuraikan bahwa kadar pati ubi kayu segar berbeda nyata dengan cara I, II, dan III, yang artinya jika ubi kayu segar diolah menjadi tepung ubi kayu maka kadar patinya akan meningkat. Sedangkan kadar pati pada cara I, II, dan III, ketiganya tidak berbeda nyata yang berarti pengolahan ubi kayu segara dengan herbagai prosedur penepungan dimungkinkan tidak akan
Pengaruh Prosedur Penepungan Ubi Kayu terhadap Kadar Pati dan Kualitas Tepung Ubi Kayu (Wika Rinawati)

Analisis lanjut menggunakan uji lanjut Tukey’s dengan membandingkan perluakn prosedur penepungan cara I dengan II, cara I dengan III, cara II dengan cara III, yang menghasilkan tepung ubi kayu dengan warna paling putih adalah prosedur penepungan cara III (pemarutan, pengeringan ampas) yang tertera pada tabel 4.

Tabel 4. Perbedaan Prosedur Penepungan terhadap Warna Tepung Ubi Kayu

<table>
<thead>
<tr>
<th>Perbandingan Perlakuan</th>
<th>Harga Perbandingan</th>
<th>Beda Taraf 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cara I dengan II</td>
<td>0.51</td>
<td>0.23</td>
</tr>
<tr>
<td>Cara I dengan III</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>Cara II dengan III</td>
<td>1.02</td>
<td></td>
</tr>
</tbody>
</table>

Penentuan kualitas aroma tepung ubi kayu menggunakan analisis uji sensoris Ranking test yang hasilnya tertera pada tabel 5.

Tabel 5. Pengaruh Perbedaan Prosedur Penepungan terhadap Aroma Tepung Ubi Kayu

<table>
<thead>
<tr>
<th>Sb Var</th>
<th>Df</th>
<th>SS</th>
<th>MS</th>
<th>F calc</th>
<th>F Tab 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampel</td>
<td>2</td>
<td>8.09</td>
<td>4.04</td>
<td>7.40</td>
<td>5.22</td>
</tr>
<tr>
<td>Panelis</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>38</td>
<td>20.80</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>28.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel di atas menunjukkan bahwa Fhit lebih besar dari Ftab, maka ada pengaruh yang sangat signifikan. Dari tabel 3 ditemukan adanya perbedaan warna tepung ubi kayu dari ketiga prosedur penepungan cara I, II, dan III.
adanya perbedaan aroma tepung ubi kayu dari ketiga prosedur penepungan.

Analisis lanjut menggunakan uji lanjut Tukey's dengan membandingkan perlakuan prosedur penepungan cara I dengan II, cara I dengan III, cara II dengan III, yang menghasilkan tepung ubi kayu dengan aroma paling tidak beraroma ubi kayu adalah prosedur penepungan cara III (pemarutan, pengeringan ampas) yang tertera pada tabel 6.

Tabel 6. Perbedaan Prosedur Penepungan terhadap Aroma Tepung Ubi Kayu

<table>
<thead>
<tr>
<th>Perbandingan Perlakuan</th>
<th>Harga Perbandingan</th>
<th>Beda Taraf 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cara I dengan II</td>
<td>0.17</td>
<td>0.08</td>
</tr>
<tr>
<td>Cara I dengan III</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Cara II dengan III</td>
<td>0.68</td>
<td></td>
</tr>
</tbody>
</table>

Hasil Ranking Test terhadap kualitas (warna dan aroma) tepung ubi kayu menunjukkan bahwa prosedur penepungan yang menghasilkan tepung ubi kayu dengan warna paling putih dan tidak beraroma ubi kayu adalah prosedur penepungan cara III (pemarutan, pengeringan ampas). Warna dan aroma tepung ubi kayu dimungkinkan dapat timbul karena kualitas ubi kayu, proses penepungan, dan proses pengeringan.


Cara I menghasilkan tepung yang berwarna krem dan beraroma ubi kayu, ini disebabkan pada proses penepungan tidak melalui proses pengepresan yang akan menghilangkan sebagian enzim yang terdapat dalam umbi.

Cara II menghasilkan tepung ubi kayu yang berwarna putih tulang dan agak beraroma ubi kayu. Dimungkinkan warna ini disebabkan pada proses pemisahan pati dengan ampas yang kemudian setelah kering dicampur sehingga menghasilkan warna putih tulang.

Penggunaan ampas ubi kayu sebagai dasar pembuatan tepung ubi kayu ternyata menghasilkan tepung dengan warna putih dan tidak beraroma ubi kayu, karena enzim polifenolase telah larut dalam air selama proses pemerasan dan pengepresan. Dari prosedur penepungan cara III ini menghasilkan dua produk sekaligus dalam
satu kali produksi sehingga cara ini lebih ekonomis, praktis, dan efisien jika diperkenalkan pada daerah penghasil ubi kayu.

SIMPU LAN
Ada tiga simpulan penelitian yang dapat disebutkan berikut.
1. Perbedaan prosedur penepungan tidak berpengaruh terhadap kadar pati karena pati mempunyai sifat tidak larut dalam air dingin.
2. Ubi kayu yang diolah menjadi tepung ubi kayu selain menurunkan kadar air akan meningkatkan kadar pati tepung ubi kayu.
3. Prosedur penepungan cara III (pemarutan, pengeringan ampas) menghasilkan tepung dengan warna putih dan tidak beraroma ubi kayu.

DAFTAR PUSTAKA