An analysis of critical thinking and communication skills in geometric transformation problem solving using TransGeo application

Malika Kautsar Ilmi a, Mohammad Syaifuddin b, *, Reni Dwi Sussanti c, Siti Khoiruli Ummah d
Mathematics Education Department, Universitas Muhammadiyah Malang
Jl. Raya Tlogomas No. 246 Tlogomas, Kec. Lowokwaru, Kota Malang 65144, Indonesia
E-mail: a malikaktr13@gmail.com, b syaifuddin@umm.ac.id, c renidwi@umm.ac.id, d khoiruliiummah@umm.ac.id
* Corresponding Author

ARTICLE INFO

Article history
Received: 7 April 2022
Revised: 31 Okt. 2022
Accepted: 30 Nov. 2022

Keywords
critical thinking skill, communication skill, transformation geometry

INTRODUCTION

There is a possibility that many students are still making mistakes in solving math problems. Some frequent mistakes are involving concepts understanding, performing calculations, and writing down facts, particularly in solving math problems in the form of story problems (Ashri & Aini, 2021) one of which is geometry transformation material, where students continue to struggle with concepts. Albab et al. (2014) stated that students struggle to understand the concept of transformation, which includes translation, reflection, rotation, and the combination of transformations. Furthermore, students need to comprehend a form when it is reflected (Gammath et al., 2020). Students’ imaginations are used to determine the final position of shadows at coordinates via dilatation, translation, reflection, and rotation when learning geometry transformation (Ristu Atmawati, Sutopo, 2019). Students have been unable to draw shadows of transformed objects due to the problem of learning geometry transformation based on the results of document studies in journal articles through interviews (Elvi et al., 2021). Also, students need help in understanding the shadow cast by the object of reflection. When some steps are used to solve geometric transformation problems, the difficulty of problem-solving is evident (Gammath et al., 2020).
The problem-solving requires special skills, specifically the skills that encourage the student to focus on awareness of prior knowledge and systematic thinking processes. To solve problems, students must have conceptual mastery (Fitria et al., 2018). In addition, problem-solving and reasoning skills are required because they focus on the student's thinking process to write down logical reasons based on the initial discovered information (Ardiyanti et al., 2019). Thinking is essential in mathematics learning because learning mathematics requires every student to understand formulas, calculate, analyze, classify objects, create manipulative media, make mathematical models, and so on. These activities require not only ordinary thinking skills but also higher-order thinking skills (Marliani, 2015).

Critical thinking skills are examples of high-level thinking abilities (Noor, Fahriza and Ranti, 2019). Critical thinking is the ability to observe information, and problems encountered by making logical decisions (Satwika et al., 2018). Critical thinking is students' ability to think by comparing two or more pieces of information, such as information obtained from new knowledge and previous knowledge process (Siswono, 2016). Students' critical thinking ability is a specific and systematic cognitive process in which they analyze the problem at hand, distinguish problems carefully and meticulously, and plan problem-solving strategies by reviewing information in advance (Azizah et al., 2018).

Communication skills, in addition to critical thinking abilities, are important abilities that must be developed to assist students in the development of the times (Noor, Fahriza and Ranti, 2019). According to Hodiyanto (2017), mathematical communication includes both oral and written communication. Oral communication takes the form of explanations or discussions. In contrast, written communication takes the form of mathematical ideas depicted or written in graphs/tables, equations, or in the student's native language. Furthermore, through communication skills, students can express their opinions on the ideas they receive and dare to ask questions when they do not understand the learning material (Wigati & Wiyani, 2020).

There were several issues with transformation learning in previous research, including the use of printed LKS (students' worksheet) (Wulandari & Raditya, 2017), GeoGebra software (Rodiaiati, 2016), and Macromedia Flash (Rizqi & Nurjali, 2020). LKS is used as teaching material to help students explore the concept of geometric transformation, particularly rotation, using a variety of approaches (Wulandari & Raditya, 2017). However, printed LKS still requires money and time to produce, making it less appealing to students in online learning (Wulandari & Raditya, 2017). GeoGebra Software can also assist in the visualization of geometry transformation spaces construction, where students can observe the elements and properties of geometric transformations (Rodiaiati, 2016). GeoGebra has the disadvantage of not being compatible with all student devices. Furthermore, Macromedia Flash is used to reduce learning difficulties and develop students' mathematical creative thinking skills through geometric transformation (Rizqi & Nurjali, 2020). Macromedia Flash also has a similar obstacle to GeoGebra since it also might not be compatible with all student devices. As a result, because it has yet to be widely used to overcome the difficulty of learning geometry transformations, the Android application was elected. Students can use Android applications because of their practicality, convenience, and attractiveness through animation.

Previous researchers have conducted several studies on critical thinking and communication skills in solving mathematical problems. According to Zakaria et al., (2021), students' critical thinking ability in solving math problems obtained from test results is still relatively low, at 68.42%. It is supported by the research of Rosmalinda et al. (2021), who stated that through test results with the PISA question type, students' critical thinking skills remained low at 58.1%. According to Ahmad & Nasution (2018), the Realistic Mathematics Learning approach revealed that students' mathematical communication skills were 40% and classified as low. It differs from the findings of Nopiyani et al. (2018), who found that the Realistic Mathematics Learning approach using GeoGebra software improved students' mathematical communication skills.

According to the description above, the solution to students’ difficulties in determining the final object's position is to train students to solve problems gradually. The novelty of this study is the use of android application media that is different from the media used in previous studies, to help students imagine the position of objects after geometric transformations are performed. This study aims to conduct a narrative analysis of students' critical thinking and communication skills in junior high schools while using the android-based TransGeo application on geometry transformation material. Furthermore, unlike previous research, this study focuses on assessing students' critical thinking and communication.
skills using visual-contextual test questions contained in the android-based TransGeo application. The benefit of this research is that students' critical thinking and communication skills allow them to compile solutions correctly and adequately to geometric transformation problems using simulations on the Android-based TransGeo application.

METHOD

The analysis of critical thinking and communication skills in solving geometric transformation problems is qualitative research using a descriptive method as an analysis decomposer. The data came from various sources, including geometry transformation test questions, interview guidelines, and validation sheets (test questions with indicators of critical thinking and communication skills). Test questions are prepared as essay questions for researchers to find out students' critical thinking and communication skills. Mathematics education lecturers will validate the compiled test questions.

Time, location, and subject of research

The study was carried out at SMP Negeri 1 Turen, located at Jalan Panglima Sudirman No.1, Turen, Kec. Turen, Malang, East Java, from September to October 2021. The supervisor made the recommendation for the research location. Furthermore, the schools were chosen based on the results of interviews with teachers in areas where students continue to struggle with geometric transformation problems. This study focused on class IX B students with 22 students. The research subjects were chosen based on the lowest average year-end assessment score and students with strong writing and explaining skills. The interview subjects determined based on the legibility of writing and the ability to explain clearly and logically. The interview subjects included three students with various levels of ability, namely high, medium, and low, and who were in the range of their respective test scores, 79 < N ≤ 100, 59 < N ≤ 79, and 0 ≤ N ≤ 59, respectively.

Stages of research

This investigation was carried out in several stages. The researcher's first step was preparation, which includes media development and the preparation of research instruments, as well as the processing of research permits to the destination school. Furthermore, media experts and practitioners were subjected to media validation and research instruments. Lecturers as material experts, media experts, and teachers as practitioners validate media and research instruments. According to the validation results, the test questions and media were very valid, and the interview guidelines were valid. The implementation of research in schools was the next stage of research. The study was conducted online using the Zoom application, with researchers and students providing tutorials on the application's operation and strengthening geometry transformation material through image visualization.

In this study, triangulation techniques used to collect data. Triangulation is a technique for validating data by comparing data outside the research data for research purposes (Guntur et al., 2020). The triangulation technique was used in this study by analyzing the results of students' answers to geometric transformation problems. To obtain accurate data, the data obtained from the test results were compared to the student's responses at the test time. Then, each category was analyzed as high, medium, or low. The identification of student interviews was based on the results of questions answer. At last, the findings would be described using the results of previous tests and interviews.

The research data

This study contains two types of data: test results and interview results. As shown in the table below, the test result data are classified based on the percentage of achievement of critical thinking and communication indicators in the emergence of student answers.

Table 1. Rubric for Assessing Critical Thinking
<table>
<thead>
<tr>
<th>The stages of problem solving</th>
<th>Description of critical thinking</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding the Problem</td>
<td>Understanding the problem indicated in the question
Students write down what they know and what they are asked in the form of Cartesian coordinates or coordinate points.</td>
<td>1. if the student incorrectly writes down the Cartesian coordinates or coordinate points
2. if the student precisely writes down the Cartesian coordinate shape or coordinate point
0 if the student does not write down the Cartesian coordinates or coordinate points</td>
</tr>
<tr>
<td>Planning a Problem-Solving Strategy</td>
<td>Determine the connection between the statement and the concept presented in the questions.
1. Record the type of transformation related to the problem information requested.
2. Create a solution plan by writing down the operator matrix based on the type of transformation.</td>
<td>1. if the student incorrectly writes down the type of transformation and the operator matrix
2. if the student specifies the type of transformation and operator matrix
0, if the student does not record the type of transformation and the matrix of operators</td>
</tr>
<tr>
<td>Implementation of Problem-Solving Strategies</td>
<td>Using strategies with precise calculation operations in solving problems
1. Create a column matrix from point coordinates.
2. Using a corresponding transformation type operator matrix to operate a column matrix from coordinates.
3. Sketch the coordinate point changes.
4. Describes the changes occurred as a result of transformation (shape, size, position)</td>
<td>1. if the student solves the problem using an unsystematic or appropriate solving procedure
2, if the student solves the problem using systematic and appropriate solving procedures
0, if the student does not write down the problem solving</td>
</tr>
<tr>
<td>Conclusion Drawing</td>
<td>Giving the precise reason for the answer taken
Connecting the object's final position to the initial problem</td>
<td>1, if the student incorrectly writes the conclusion
2, if the student correctly writes down the conclusion
0, if the student does not write down the conclusion</td>
</tr>
</tbody>
</table>

Adapted from *Karim & Normaya (2015)*

Table 2. Rubrics for Assessing Communication Skill
<table>
<thead>
<tr>
<th>Stages of problem solving</th>
<th>Description of communication skill indicators</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding the Problem</td>
<td>Using precise symbols to illustrate mathematical ideas based on information interrelationships. Students write what they know and are asked in the form of cartesian coordinates or coordinate points.</td>
<td>2, if the students write down what they know and are asked in the question using symbols precisely 1, if the students write down what they know and are asked in the question using symbols incorrectly 0, if the students do not write down the information contained in the question using symbols</td>
</tr>
<tr>
<td>Planning a Problem-Solving Strategy</td>
<td>Use images or mathematical sentences to convey explanations 1. Identify the type of information transformation required for the problem. 2. Describe a sketch in cartesian coordinates to explain the final position of the field region described in the question.</td>
<td>2, if the students write down the type of transformation correctly or draw the sketch correctly 1, if the students write down the type of transformation incorrectly or draw the sketch incorrectly 0, if the students do not write down the type of transformation or do not draw a sketch</td>
</tr>
<tr>
<td>Implementation of Problem-Solving Strategies</td>
<td>Presenting solutions or concepts with calculation operations in solving problems in sequence 1. Converting point coordinates to a column matrix 2. Operating a column matrix from coordinates with a corresponding transformation type operator matrix 3. Sketching coordinate point changes 4. Describing changes occurred according to the type of transformation (shape, size, position)</td>
<td>2, if the student applies the settlement procedure systematically and appropriately 1, if the student applies unsystematic or improper completion procedures 0, if not applying the settlement procedure</td>
</tr>
<tr>
<td>Conclusion Drawing</td>
<td>Giving the precise reason for the answer taken Connecting the object's final position to the initial problem</td>
<td>2, if the student correctly writes down the conclusion 1, if the student incorrectly writes the conclusion 0, if the student does not write down the conclusion</td>
</tr>
</tbody>
</table>

Adapted from Danaryanti & Noviani (2015)
The rubrics for assessing critical thinking and communication skills are shown in Tables 1 and 2. To obtain the assessment scores, data in the form of student answers and interview transcripts are combined in Tables 1 and 2. The scores are then added up, and the percentage of achievement for each indicator is calculated. After calculating the percentage, the percentage numbers that demonstrate the achievement of indicators of critical thinking and communication skills are classified. The interview subjects are then determined based on critical thinking and student communication scoring results.

Data analysis

This study employs both qualitative and quantitative data analysis. The forms of student writing on test answer sheets adapted to indicators of critical thinking and communication abilities yield qualitative data. Interview transcripts also generate qualitative data. Quantitative data is information presented as a percentage score of test results.

The descriptive method analyzes data from tests and interviews, and triangulation is performed. The test result data are given comments as evidence of the suitability of students' answers with indicators of critical thinking and communication skills in the first stage. The second stage is data reduction, in which test results are grouped according to the critical thinking and communication assessment rubric categories. Interview results are grouped according to the appearance of keywords in each indicator of critical thinking and communication skills. The third stage of data verification involves cross-referencing the test results with the interview results. The fourth stage is displaying scans of students' answers that have been given appropriate indicators of relational thinking skills, followed by the obtained interview results, whether they support the students' responses. The fifth stage is concluding test and interview results, as well as evidence and reasons, in the form of exposure to critical thinking indicators.

This analysis model contains two variables: independent and dependent variables. Independent variables are critical thinking and communication skills, and dependent variables are an android-based TransGeo geometry transformation application.

The validation results are calculated using a Likert Scale and a scoring rubric that includes critical thinking and communication skills indicators on the geometry transformation question test, followed by calculating the percentage of scores obtained. The following formula is used to calculate the percentage of achievement of students' critical thinking and mathematical communication skills.

\[
P = \frac{\text{score}}{\text{score total}} \times 100\%
\]

Tables 3 and 4 show the achievement levels of students' critical thinking and mathematical communication skills.

<table>
<thead>
<tr>
<th>Percentages (P)</th>
<th>Category</th>
<th>Conclusion drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ P ≤ 59</td>
<td>low</td>
<td>Achievement of low critical thinking indicators</td>
</tr>
<tr>
<td>59 < P ≤ 79</td>
<td>moderate</td>
<td>Achievement of indicators of good critical thinking</td>
</tr>
<tr>
<td>79 < P ≤ 100</td>
<td>high</td>
<td>Achievement of critical thinking indicators is excellent</td>
</tr>
</tbody>
</table>

Adapted from Muslimahayati (2020)

Table 4. Categories of Mathematical Communication Ability Achievements

<table>
<thead>
<tr>
<th>Percentages (P)</th>
<th>Category</th>
<th>Conclusion drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ P ≤ 33</td>
<td>low</td>
<td>Achievement of indicators of low communication ability</td>
</tr>
<tr>
<td>33 < P ≤ 66</td>
<td>moderate</td>
<td>Achievement of indicators of good communication skills</td>
</tr>
<tr>
<td>66 < P ≤ 100</td>
<td>high</td>
<td>Achievement of excellent communication skills indicators</td>
</tr>
</tbody>
</table>

Adapted from Wijayanto et al. (2018)

According to Table 3, if students' critical thinking ability reaches a score of more than 59%, it is concluded that there is success in terms of critical thinking ability when solving geometry transformation
problems. Suppose the student's mathematical communication ability exceeds 33%. In that case, it can be concluded from Table 4 above that there is a success when solving geometric transformation problems in aspects of students' communication skills.

RESULT AND DISCUSSION

The research implementation at SMPN 1 Turen began on September 22, 2021 using Zoom, and included tutorials on how to use the TransGeo application, tests, and interviews. The research was carried out in two meetings. During the first meeting, a tutorial on using the TransGeo application was implemented online, and students downloaded the application using the http://bit.ly/Trans_Geo URL first. Furthermore, students were given a 30 minutes test downloaded on an Android application. Finally, the answer to the test result was uploaded to Google Form with the URL https://bit.ly/TransGeobyUMM. Based on the achievement of critical thinking and communication ability indicators, students' test answers were classified as high, medium, or low. Students in the high category have the highest critical thinking and communication test scores, students in the medium category have moderate critical thinking and communication test scores, and students in the low category have the lowest critical thinking and communication test scores. During the second meeting, each category representative was interviewed for 20 minutes. Interviews were conducted online through WhatsApp application.

The application is created with the Android Studio application. The transgeo application's components include simulations of reflection, translation, dilatation, and rotation materials based on the characteristics of contextual problems in the test question section. The simulation in the application created with geogebra software to help students understand the steps and complete the geometry transformation material. Then an example of a simulation of a reflective material with a point is provided. After that, students were asked to explain the changes occurred during the simulation. The study's findings were summarized in the following paragraph. Data analysis was based on the classification of the obtained scores, which are high, medium, and low. Students' answers were typed into MSWord to make it easier to read the text and not to reduce the elements in it.

Representation process carried out by high-scoring students

NK is the student with the highest ability score. Based on Polya's problem-solving stages, NK meets all critical thinking and communication skills indicators. It can be seen in the following figure when NK reads and describes the known issues.

| Stage 1:
Let: The region at the intersection of five gumul is depicted rectangular with coordinates $A(2.2)$, $B(7.2)$, $C(7.5)$, $D(2.5)$. Bounded by highways that form the coordinate axis and divide 4 different subdistrict areas.

Asked:
If a contractor wants to buy new land with a dilatation of -2 with a center point (0.0). How many field coordinates does the contractor get and determine the sub-district that is the area? |

Figure 1. NK's Answer to Stage 1
Then, as shown in Figure 2, NK develops and implements a troubleshooting strategy and conclusion drawing.

Figure 2. NK's answers on Stages 2, 3, and 4.

<table>
<thead>
<tr>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B.\begin{pmatrix}7' \ 2'\end{pmatrix} = \begin{pmatrix}−2 & 0 \ 0 & −2\end{pmatrix}\begin{pmatrix}7 \ 2\end{pmatrix} = \begin{pmatrix}−14 \ −4\end{pmatrix}$</td>
<td>$A.\begin{pmatrix}2' \ 2'\end{pmatrix} = \begin{pmatrix}−2 & 0 \ 0 & −2\end{pmatrix}\begin{pmatrix}2 \ 2\end{pmatrix} = \begin{pmatrix}−4 \ −4\end{pmatrix}$</td>
<td>$C.\begin{pmatrix}7' \ 5'\end{pmatrix} = \begin{pmatrix}−2 & 0 \ 0 & −2\end{pmatrix}\begin{pmatrix}7 \ 5\end{pmatrix} = \begin{pmatrix}−14 \ −10\end{pmatrix}$</td>
</tr>
</tbody>
</table>

Coordinates $A(−4, −4)$, $B(−14, −4)$, $C(−14, −10)$, $D(−4, −10)$ located in Pesantren sub-district

According to the research findings in the interview results, students who demonstrated critical thinking skills in indicator 1 can write down what they knew and ask questions. In indicator 2, students can connect revelations and concepts in the problem and devise a solution strategy. In indicator 3, students can use strategies with precise calculation operations based on the use of structures in the dilatation formula to determine the obtained shadow points. In indicator 4, students also write the correct conclusions based on the initial problem. Furthermore, the interview results show that students achieve mathematical communication skills in indicator 1, which is being able to write down what is identified and asked by writing the appropriate symbols. Furthermore, students can explain using the mathematical sentences outlined in indicator 2. In indicator 3, students can use strategies with precise calculation operations based on the use of structures in the dilatation formula by determining the obtained shadow points. Finally, according to indicator 4, students write rational reasons for the initial problem.

Representation process carried out by moderate-scoring students

SA students have moderate test scores. SA can solve problems that meet several critical thinking and communication skills indicators. Based on the results of his answer in Figure 3, SA can write down what was known in the question but did not write down what was asked in the question. This demonstrates that SA comprehends the issues raised by the questions.
1. Let: A (2,2), B(2,7), C(1,5), D(2,5)
 Dilation of -2 with a center point (0,0)

Figure 3. SA’s Answer to Stage 1

According to figure 3 above and the interview results, SA conveyed several things about the problems described in the following.

P: "Try to tell me what problems you had with the question!"
SA: "When I read the question, I discovered a problem in which I was instructed to find the location of the new ground shadow point."

P: "So, what are the facts and questions about this subject? And what should be written as preliminary information on this matter’s work?"
SA: "The land’s starting point or coordinate with points A(2,2), B(2,7), C(7,5), and D (2,5). I believe the preliminary information is a matrix transformation with dilation of -2 to find a new ground shadow point ".

Then, as shown in Figure 4, SA develops a troubleshooting strategy.

Figure 4. SA’s answers on stages 2

Stage 1:
1. Let: A(2,2); B(2,7); C(7,5), D(2,5)
 Dilation of -2 with a center point of (0,0)

 \[
 \begin{align*}
 (a', b') &= (m \cdot a, m \cdot b) \\
 (2', 2') &= (\frac{-2}{0}, \frac{2}{-2}) \\
 &= (-4, -4) \quad \text{Point A} \\
 \end{align*}
 \]

 \[
 \begin{align*}
 (d', c') &= (m \cdot d, m \cdot c) \\
 (2, 5) &= (-2, 2.5) \\
 &= (-4, -10) \quad \text{Point D} \\
 \end{align*}
 \]

 \[
 \begin{align*}
 (2', 5') &= (\frac{-2}{0}, \frac{-2}{-2}) \\
 &= (-14, -10) \quad \text{Point C} \\
 \end{align*}
 \]
Figure 5. SA's answers on stages 3 and 4.

Figure 5 depicts SA's steps in analyzing the operating structure when executing the chosen plan. SA follows a predetermined plan to determine the final grade outcome. SA also creates a sketch for the final position of a known problem's object. Referring to the student's response in figure 5, SA revealed a few details during the interview.

P: "Given the most important information available right now, why do you employ such an approach to answering the question?" Then tell me how you implement the strategy in your work!"

SA: "Because the form of matrix transformation with a dilatation of -2 is known, I just need to substitute the value of -2 into the formula. As a result, the known starting point multiplied by the dilatation scale equals -2. And in the outcomes of A(-4,-4), B(-14,-4), C(-4,-10) and D(-14,-10)."

P: "Do you write a conclusion after solving the problem of the problem and discovering the result?"

SA: "No, after I solved the problem, I wrote down my conclusions and immediately began to sketch a solution."

According to the above description, after discovering the results of the requested grades, SA forgot to write down the conclusions, instead sketching out the new position of the land requested by the question. Because SA needs to write down conclusions, his critical thinking and communication skills are less apparent when re-reading the questions to evaluate the results of the answer decision.

According to the findings of the supportive interviews, students who demonstrated critical thinking skills in indicator 1 can write down what they knew but did not write down what was asked in the questions. As shown in indicator 2, students can make connections between revelations and concepts in the question. The achievement of indicator 3 demonstrates that students can use strategies with precise calculation operations based on the use of structures in the dilatation formula by determining the obtained shadow points. Nonetheless, as stated in indicator 4, students do not write down the conclusions. Furthermore, supportive interviews reveal that students who demonstrate
mathematical communication skills in indicator 1 can write down what was known but cannot write what is asked about the question by using the correct symbols. Students can explain through sketch drawing when determining the object's final position, as stated in indicator 2. The student's explanation demonstrates the achievement of indicator 3; it demonstrates that students can use strategies with precise calculation operations based on the use of structures in the dilatation formula by determining the obtained shadow points. The results, as with students' critical thinking skills, show that students do not write down conclusions as the scoring rubric in indicator 4.

Representation process carried out by low-scoring students

RN students obtain the lowest scores. RN cannot carry out several indicators of critical thinking and mathematical communication, as well as explain the problems in the work results. According to the type of transformation, the RN writes down a strategy with calculation operations through a column matrix and an operator matrix based on the RN answer sheet in figure 6.

![Figure 6. RN's Answer to Stage 1](image)

Figure 6 depicts the RN conducting a strategy selection during the planning stage. The RN can construct and analyze a plan and link the concept to the problem's calculation operation. Given the question, the RN wrote down the reasons for the problem. According to the interview results, the RN communicated some of the problems discovered.

P: "What motivates you to write the matrix equation? What are the known and asked problems you are familiar with?"

RN: "To substitute the fixed point, write down the equation according to the steps in the application. There are four points, A(2,2), B(7,2), C(7,5), and D(2,5), and the point is dilated by -2 with a center point (0,0), then substituted, and the result is found."

P: "Did you write a conclusion after you solved the problem?"

RN: "I wrote a brief conclusion due to time constraints, so I immediately sent it to the link contained in the application."

According to research findings based on interview data, students with critical thinking skills cannot write down what is identified and asked, as indicated in indicator 1. Students are less able to relate statements and concepts in questions like those in the assessment rubric with indicator 2. The achievement of indicator 3 demonstrates that students can use strategies with precise calculation operations based on the use of structures in the dilatation formula by determining the shadow of the obtained object. In accordance with indicator 4, students write down their conclusions briefly. Furthermore, the interview results reveals that students who demonstrated mathematical communication skills cannot write down what they knew and asked questions by using the correct symbols, as stated in indicator 1. Students cannot convey explanations through sketch drawing or mathematical sentences in determining the object's final position in indicator 2 measurement. The measurement of indicator 3 demonstrates that students can use strategies with precise calculation operations based on the use of structures in the dilatation formula by determining the obtained shadow endpoints. Students jot down their conclusions in a brief manner (indicator 4).
Table 5 shows the achievement of students' critical thinking skills based on the findings of the preceding research.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Percentage of Achievement</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding the problem indicated in the question</td>
<td>81.06%</td>
<td>Very Good</td>
</tr>
<tr>
<td>Determine the connection between the statement and the concept presented</td>
<td>71.36%</td>
<td>Good</td>
</tr>
<tr>
<td>Using strategies with precise calculation operations in solving problems</td>
<td>80.09%</td>
<td>Good</td>
</tr>
<tr>
<td>Giving the precise reason for the answer taken</td>
<td>68.37%</td>
<td>Good</td>
</tr>
</tbody>
</table>

Adapted from Wijayanto et al. (2018)

Table 5 depicts the overall achievement of critical thinking ability indicators based on test and interview results. The analysis results in Table 5 show that overall achievement of the indicators of critical thinking ability is categorized as good.

Table 6 shows the overall achievement of mathematical communication ability indicators based on test results and interviews. It can be concluded that the achievement of mathematical communication skills indicators is very well classified.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Percentage of Achievement</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using precise symbols to illustrate mathematical ideas based on</td>
<td>81.06%</td>
<td>Very Good</td>
</tr>
<tr>
<td>information interrelationships.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use images or mathematical sentences to convey explanations</td>
<td>60.67%</td>
<td>Good</td>
</tr>
<tr>
<td>Presenting solutions or concepts with calculation operations in solving</td>
<td>80.09%</td>
<td>Very Good</td>
</tr>
<tr>
<td>problems in sequence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giving the precise reason for the answer taken</td>
<td>68.37%</td>
<td>Very Good</td>
</tr>
</tbody>
</table>

Adapted from Wijayanto et al. (2018)

Table 6 shows the overall achievement of mathematical communication ability indicators based on test results and interviews. It can be concluded that the achievement of mathematical communication skills indicators is very well classified.

Based on the tests and interviews, it can be concluded that the achievement of indicators of critical thinking ability using android-based applications is well categorized. It is consistent with Rasyid et al. (2019)'s findings that using Android game media improves student learning outcomes in good categories compared to those who do not use Android-based learning media. According to Winata et al. (2019), the use of android improves students' critical thinking skills by 80% on average in cycle II.

The interview results show that RN can understand the problem, develop a solution strategy, and put the strategy into action. On the other hand, RN was less able to re-examine the outcomes of the answers obtained. The RN can form relationships based on information linkage in the problem or prior knowledge. When the RN re-examines the answers, however, RN is incorrect in evaluating the results of the answer decisions by writing down conclusions. It is consistent with previous research in which students cannot write down the problem's conclusions for it to be solved. (Pertiwi, 2018).

According to research findings on the subject of NK, NK is capable of reading and understanding problems, both in terms of preparing plans to be used and implementing plans, as well as writing rational reasons for a statement related to the initial problem. As a result, NK has been classified as meeting critical thinking and communication indicators. This is consistent with research by Albab et al. (2014), which states that if students give the correct reasons by reading the same number from the shadow, a pattern will be discovered. In terms of SA, he can devise problem-solving strategies by identifying the relationship between statements and concepts. As a result, SA is classified as meeting some of the critical thinking and communication indicators. Furthermore, this research is consistent with previous research...
in which students can write types of transformations using the information on the characteristics of each based on what they understand (Albab et al., 2014).

According to the study's findings, the indicator of critical thinking ability and mathematical communication that many students achieve is indicator 1, where students are using written statements. It is consistent with previous research, which found that students with critical thinking skills can solve problems by writing down what they know and asking the right questions (Asria et al., 2021). Thus, 75.21% of the four critical thinking indicators on geometric transformation material are met. Furthermore, students' overall achievement in the four mathematical communication indicators on geometric transformation material was 72.5%.

CONCLUSION

Students can gain a better understanding of the concept of prerequisite materials such as matrices and coordinate systems by demonstrating their achievement towards certain indicators of critical thinking and communication skills in good categories. According to Polya, students can achieve the highest levels of critical thinking by using problem-solving stages in the first indicator, which measures their ability to understand or read problems. The level of achievement is lowest for the fourth indicator, which requires giving appropriate reasons for responses. Most students either do not write anything down or write conclusions that are not relevant to the initial problem. Students are able to comprehend concepts and precisely apply the operator matrix if the overall achievement of critical thinking indicators is within the good range. According to Polya, students achieve the highest level of achievement in the first indicator of mathematical communication, which is to appropriately illustrate mathematical ideas using symbols. Students also achieve the highest level of achievement in the second indicator of mathematical communication, which is to solve mathematical problems. The least amount of success was found with the fourth indicator, which offers a logical justification for a statement. The vast majority of students do not write incorrect conclusions that improperly connect the object's ultimate position to the original issue. The overall achievement of communication indicators is in the very good range, which indicates that students are able to comprehend ideas and precisely apply operator matrices through the use of images or mathematical sentences. The level of critical thinking and communication demonstrated by this study's fourth indicator remained at a relatively low level. It is important that suggestions for further research be able to generate questions that motivate students to write down conclusions or reasons related to the initial problem.

REFERENCES

Malika Kautsar Ilmi, Mohammad Syaifuddin, Reni Dwi Sussanti, Siti Khoiruli Ummah

204–212. https://doi.org/10.20527/edumat.v3i2.648
Seminar Nasional Matematika Dan Pendidikan Matematika (Senatik 1), 11–26.

