REACTIONS OF cis-[PtCl\((^{15}\text{NH}_3)_2(H_2O)]^+\), THE FIRST CISPLATIN HYDROLYTES WITH THIOLS. 3: REACTIONS WITH GLUTATHIONE

Sutopo Hadi
Jurusan Kimia, FMIPA, Universitas Lampung
Jl. S. Brojonegoro No 1 Gedong Meneng, Bandar Lampung 35145
E-mail: sutopo_hadi@yahoo.com.au

ABSTRAK

Interaksi antara senyawa kompleks cis-[PtCl\((^{15}\text{NH}_3)_2(H_2O)]^+\) (2) dengan glutation (GSH) telah dilakukan pada larutan berair. Pada reaksi ini, padatan yang berbentuk polimer tidak terbentuk dan pelepasan ligan amina lebih lambat dibanding reaksi sejenis untuk kompleks cis-[Pt(\text{NH}_3)_2(H_2O)]^{2+} (3). Dalam seri penelitian ini juga diamati bahwa walaupun reaksi yang terjadi antara kompleks 2 dengan berbagai tiol memberikan hasil yang akhir yang berbeda, akan tetapi pada tahap awal reaksi, senyawa yang terbentuk adalah sama yaitu terbentuknya spesi platina(II) dengan ligan klorida dan tiolat yang terikat secara monodentat melalui atom sulfur. Pada reaksi ini, setelah terbentuk hasil awal yaitu kompleks platina dengan glutation terikat secara monodentat cis-[PtCl(\text{NH}_3)_2(SG)] (7), tidak ada senyawa komplek lain yang teramati. Seperti pada reaksi kompleks 3 dengan GSH, senyawa bistiolat cis-[Pt(\text{NH}_3)_2(SG)](8) selalu teramati dalam reaksi ini. Sedangkan, kompleks sulfur dua inti berjembatan yang memberikan serapan lebar pada 15N NMR hanya teramati dalam jumlah yang sangat sedikit.

Kata kunci: 15N NMR, glutation, hidrolisat cisplatin

ABSTRACT

The interactions of cis-[PtCl\((^{15}\text{NH}_3)_2(H_2O)]^+\) (2) with glutathione (GSH) was investigated in aqueous solution. In this reaction, polymeric solid was not formed and the ammine liberation was slower than that for cis-[Pt(\text{NH}_3)_2(H_2O)]^{2+} (3). It is also observed that although in the reactions of 2 with a variety of thiols gave different ultimate product in each reaction, initially the only product observed was a platinum(II) species with chloride and the thiolate ligand bound monodentate through sulfur. In this reaction, after the initial formation of a complex with glutathione bound monodentate cis-[PtCl(\text{NH}_3)_2(SG)] (7), no other product was observed. As with reaction of (3) the bis (thiolate) platinum(II) complex, cis-[Pt(\text{NH}_3)_2(SG)](8) was always formed. The dinuclear sulphur-bridged complex, giving a broad peak in 15N NMR, was only present in very tiny amounts in this reaction.

Key words: 15N NMR, glutathione, cisplatin hydrolytes
INTRODUCTION

The main emphasis in the study of cisplatin, cis-\([\text{PtCl}_2(\text{NH}_3)_2]\) (1), a metal-based drug, with biological system has centred on interactions with DNA, and it is widely accepted that the antitumour activity of cisplatin and related compounds is due to primarily to interactions with DNA; however, reactions with other molecules in biological fluids are likely to affect the efficiency with which platinum compounds reach that target, as well as being involved in drug toxicity. The most important appear to be those containing sulphur as a potential coordination site. These include cysteine, methionine, s-adenosyl-L-homocysteine, glutathione and a variety of proteins (Lempers & Reedijk, 1991).

Interactions between platinum and biomolecules containing sulfur have been implicated in the nephrotoxicity of cisplatin (Borch & Pleasant, 1979), antitumour resistance to cisplatin (Fram et al., 1985; Hamilton et al., 1985; Hispers et al., 1985), cell repair mechanism (Eastman, 1987) and in the formation of crosslinks with monofunctional DNA adduct to prevent formation of bifunctional lesions (Eastman, 1987; Eastman & Barry, 1987; Bodener et al., 1986).

Thiols such as cysteine (\(\text{H}_2\text{Cys}\)), N-acetylcysteine (\(\text{H}_3\text{accys}\)) and glutathione (GSH) are among the more reactive biological molecules towards the antitumour drug, cisplatin cis-\([\text{PtCl}_2(\text{NH}_3)_2]\) (1). These reactions play a significant role in the metabolism of cisplatin and its hydrolysis products cis-\([\text{PtCl}((\text{NH}_3)_2(\text{H}_2\text{O}))]\) (2) and cis-\([\text{Pt}((\text{NH}_3)_2(\text{H}_2\text{O}))^2]\) (3) (Bancroft et al., 1990).

It is established that the DNA and nucleotide reactions are primarily limited by the rate of aquations of cisplatin Bancroft et al., 1990) and that the reactive species from the cisplatin is diammineaquachloroplatinum(II)(2) (Bancroft et al., 1990; Barnham et al., 1994; Bose et al., 1997; Miller & House, 1989a,b, Miller & House, 1990, Miller & House, 1991). Cisplatin, cis-\([\text{PtCl}_2(\text{NH}_3)_2]\) (1) can undergo hydrolysis reactions as shown in Scheme 1.

Scheme 1. Hydrolysis of cisplatin

It has previously been established that thiolate tends to form a bridge between the two metal ions (Odenheimer & Wolf, 1982, Dedon & Borch, 1987, Appleton et al., 1989c). It is important to investigate the chemistry of the thiolate complexes which is relevant to the behaviour of cisplatin metabolites in vivo condition, where concentration of Pt-species is low, and there is no bridging.

These reactions were therefore explored in solution with low concentrations of the hydrolytes (1 – 10 mM). \(^{15}\text{N}\) NMR method may be used under these conditions if there is 100% \(^{15}\text{N}\) in the ammine ligands.

This paper describes the reaction of cisplatin hydrolytes, cis-\([\text{PtCl}[^{15}\text{NH}_3)](\text{H}_2\text{O})]\) (2) with glutathione (GSH), a sulphur-containing ligand. The other papers related to this work which discuss the reaction of complexes 2 with other thiols have also been submitted to be published elsewhere (Hadi, 2006a,b,c) and reactions of 3 with different sulphur-containing ligands has been published (Hadi, 2005).

EXPERIMENTAL

Starting Materials

\(^{15}\text{N}\)-labelled (\(\text{NH}_3\))\(_2\text{SO}_4\) (> 98% \(^{15}\text{N}\)) was obtained from Novachem (Melbourne Australia), and was used to prepare cisplatin which was prepared by the known procedure (Dhara, 1970). Glutathione was purchased from Sigma Aldrich and used without further purification.
Preparation of cis-[PtCl\(^{15}\text{NH}_3\)\(_2\)(H\(_2\)O)]\(^+\) (2)

The typical procedure used to prepare cis-[PtCl\(^{15}\text{NH}_3\)\(_2\)(H\(_2\)O)]\(^+\) (2) was by converting cis-[Pt\(^{15}\text{NH}_3\)\(_2\)(H\(_2\)O)]\(^+\) (3) to cis-[PtCl\(^{15}\text{NH}_3\)\(_2\)(H\(_2\)O)]\(^+\) (2) and was based on the procedure described by Appleton et al. (1985). This was done by the slow addition of one mol equivalent of a solution of NaCl, by using a small syringe to deliver one drop every 2 minutes and stirring the mixture reaction continuously. This is the most critical step, since this will affect the formation of cis-[PtCl\(^{15}\text{NH}_3\)\(_2\)(H\(_2\)O)]\(^+\). Normally the solution will contain mostly cis-[PtCl\(^{15}\text{NH}_3\)\(_2\)(H\(_2\)O)]\(^+\) (80 – 87%), cis-[Pt\(^{15}\text{NH}_3\)\(_2\)(H\(_2\)O)]\(^+\) (7 – 15 %) and cisplatin (5 – 10 %) (based on the peak heights in the \(^{15}\text{N}\) NMR or integration in \(^1\text{H}\) NMR). It is not possible to obtain a solution containing 100 % cis-[PtCl\(^{15}\text{NH}_3\)\(_2\)(H\(_2\)O)]\(^+\).

Typical Reaction Condition

The reactions were carried out under Argon gas to minimise the oxidation of the thiol. No buffer was added as it reacts with the starting material used. The solid GSH was added to a small bottle containing a solution of 2 with pre-measured pH. Within 10 to 15 seconds the mixture reaction was transferred to a 5-mm NMR tube, then placed in the AV200 NMR spectrometer (already tuned for \(^{15}\text{N}\) NMR) and accumulation of 40.54 MHz \(^{15}\text{N}\) NMR spectra was commenced. The reaction proceeded quite fast, one experiment was left it run for about 6 – 10 hours continuously (in multi experiment mode).

NMR Spectra

The 1D 40.54 MHz \(^{15}\text{N}\) NMR spectra were recorded using DEPT pulse sequence (Berners-Price & Kuchel, 1990) to increase the sensitivity in a Bruker Avance 400 MHz spectrometer with a 5 mm broadband multinuclear probe. The number of scans used to obtain spectra was normally 250 - 500. A recycle time of 3.54 s was used with pulse width of 12.55 \(\mu\)s (tilt angle of 45 degrees). The number of data points used was 32 K. Chemical shifts are reported relative to 2.5 M \(^{15}\text{NH}_2\)SO\(_4\) in 1 M H\(_2\)SO\(_4\) (\(\delta_N = 0.00\)) in coaxial capillary.

RESULTS AND DISCUSSION

The reaction of 2 with glutathione gave similar products to those with H\(_2\)accys, except that in this reaction the formation of (bis-thiolate) platinum products is more rapid. It was observed that the polymeric solid was not formed and the ammine liberation was slower compare to that for 3 (Hadi, 2005). Initially the only product observed was a platinum(II) species with chloride and the thiolate ligand bound monodentate through sulphur. The reactions that occurred are summarized in Scheme 2 and the NMR parameters for reaction products are presented in Table 1.

<table>
<thead>
<tr>
<th>Complex</th>
<th>(\delta_H) (ppm)</th>
<th>(\delta_N) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{trans to S})</td>
<td>(\text{trans to Cl})</td>
</tr>
<tr>
<td>cis-[PtCl(^{15}\text{NH}_3)(_2)(H(_2)O)]</td>
<td>4.22</td>
<td>4.17</td>
</tr>
<tr>
<td>cis-[PtCl(^{15}\text{NH}_3)(_2)(SG)]</td>
<td>3.83</td>
<td>4.08</td>
</tr>
<tr>
<td>cis-[Pt(_3)(SG(_2))](_3)(8)</td>
<td>3.77</td>
<td></td>
</tr>
</tbody>
</table>

All reactions were carried out in H\(_2\)O/5\%D\(_2\)O.
Previous extensive studies (Appleton et al., 1988) in related system have shown that the sulphhydril group of H₂accys is the preferred binding site of platinum. The presence of free ammonium ion was readily detected from the 15N NMR spectrum of the solution if the reference capillary containing 15NH₄⁺ was removed. The signal from free ammonium ion was detected after 30 minutes and continued to grow with time. This ammonium ion is from ammine loss which occurred due to the high trans effect of thiolate sulphur.

When solid GSH was added to the solution of 2 in 1:1 mol ratio, the 15N NMR spectrum 1 h after mixing (Fig. 1), showed one pair of new peaks with equal intensities ($\delta_N = 43.18$ and -62.45 ppm) and one other peak at $\delta_N = -41.59$ ppm. The pair of peaks corresponded to a species with ammine trans to sulfur and chloride respectively (Appleton et al., 1985, Appleton et al., 1988, Appleton et al., 1989a, Appleton et al., 1989b) and was assigned to complex cis-[PtCl(15NH₃)$_2$(SG)](7) (Scheme 2). The other peak, $\delta_N = -41.59$ ppm, present must be due to the formation of bis (thiolate) platinum(II) cis-[Pt(NH₃)$_2$(SG)$_2$] (8), this platinum(II) species was also observed in the reaction of 3 with GSH (Hadi, 2006a).

![Scheme 2. Reaction of (2) with GSH](image)

Fig. 1. 40.54 MHz 15N DEPT NMR spectrum of a solution obtained from the reaction of 7.4 mM 2 and GSH in 1:1 mol ratio, 1 h after mixing

No further change with time was observed. After 12 hours, the peaks remaining were from unreacted (1), free ammonium ion released, and bis (thiolate) complex (8). When the reaction was carried out with 1:2 mol ratio (or GSH in excess), there was no difference in the product formation, except the formation of complex 8 was much faster.

CONCLUSIONS

Compounds containing monodentate S-bound thiolate are moderately stable in solution at low concentration. Ammine loss trans to sulfur is rapid, especially in the chelate complex. The results presented here, is believed, represent the first adequate characterization of these species in such
reaction. The other reactions of the compound 2 and 3 with other sulphur-containing ligand will be published elsewhere.

ACKNOWLEDGMENTS

The author deeply thanks to Prof. T.G. Appleton (University of Queensland, Australia) for his help, guidance and discussion. I am also grateful for the award of Scholarship from DUE Project Universitas Lampung, Indonesia and Department of Chemistry, University of Queensland, Australia. Thanks also go to Ms. L. Lambert and Dr. T. Lee for their assistance in the N.M.R. experimentation.

REFERENCES

Fram, R.J., Cusick, P.S., Wilson, J.M., Marinus, M.G. (1985). Mismatch Repair of cis-

Miller, S.E., House, D.A. (1989). The Kinetics of Formation and Anation of the cis-