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Abstract—Accurate short-term electricity load forecasting is critical for planning power 

generation and maintaining cost efficiency. Since the amount of electricity generated 

significantly affects the cost-efficiency of power generation, a forecasting method with high 

accuracy is required. In response, this study developed a Recurrent Neural Network (RNN) 

model architecture trained using three different algorithms: Levenberg-Marquardt, Bayesian 

Regularization, and Scaled Conjugate Gradient. The model's performance was evaluated using 

the Mean Absolute Percentage Error (MAPE) metric. Historical load data were categorized by 

day type and divided into training and testing sets. The best-performing RNN model was used 

to carry out load forecasting, which was then compared to the forecasting results from PT PLN. 

Among the models tested, the RNN trained with Bayesian Regularization, configured with an 

8-16-1 network architecture using a learning rate of 0.01 achieved the highest accuracy. In a 

two-week forecasting simulation, this model reached a MAPE of 1.4084%, significantly 

outperforming the 3.3160% error from PLN’s conventional forecasting method. These results 

underpin the effectiveness of RNNs, particularly when trained with Bayesian Regularization, 

for enhancing short-term electricity load forecasting within the scope of this dataset. 
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1 Introduction  

The amount of electric power generated has a significant impact on the cost efficiency of 

electricity production, making accurate load forecasting essential [1]. Proper forecasting ensures that 

the supply of electricity aligns with demand, minimizing both excess generation and shortages. As 

the state-owned utility responsible for electricity supply and distribution in Indonesia, the State 

Electricity Company (PLN) must carry out comprehensive load planning. This includes forecasting 
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to ensure that electricity generation closely matches real-time demand, optimizing resource use and 

system stability. 

A key component of this planning process is Short-Term Load Forecasting (STLF), which is 

crucial but also presents complex challenges [2]. With ongoing technological advancements, STLF 

methods have evolved and are typically grouped into two main categories: conventional and non-

conventional approaches. Conventional methods often rely on statistical techniques such as 

regression analysis and time series models, with popular examples including Autoregressive 

Integrated Moving Average (ARIMA) and the Holt-Winters exponential smoothing. 

In contrast, recent studies have increasingly centered on Artificial Intelligence (AI) and Machine 

Learning (ML) approaches for load forecasting. Models such as the Convolutional Long Short-Term 

Memory (ConvLSTM) network [3], Long Short-Term Memory (LSTM) neural networks [4][5], 

LSTM combined with residual networks [6], LSTM-RNN hybrids [7], Deep Neural Networks 

(DNN) [8][9], Quantile LSTM networks [10], TCN-LSTM architectures [11], and Deep Recurrent 

Neural Networks (DRNN) [12] have shown promising results. These ML-based models often 

outperform traditional methods [13][14], largely due to their ability to capture complex, nonlinear 

patterns that conventional models struggle to address [15][16]. 

Several prior studies have examined the performance of different neural network architectures 

for STLF, including the Backpropagation Neural Network (BPNN), Elman Neural Network, Fuzzy 

Neural Network, and Wavelet Neural Network. Among these, BPNN was found to produce the most 

accurate predictions for short-term load forecasting [17]. Similarly, applied Recurrent Neural 

Networks (RNNs) demonstrated improved forecasting accuracy, with Mean Absolute Percentage 

Errors (MAPE) of 7.22% using 10 hidden neurons, 7.13% with 20 neurons, and 6.98% with 30 

neurons, respectively. Compared to the feedforward neural network model, which had MAPE values 

of 9.05% with 10 hidden layers, 8.71% with 20 hidden layers, and 8.92% with 30 hidden layers. The 

training algorithm used was Levenberg-Marquardt [18].  

Short-Term Load Forecasting (STLF) provides critical input to ensure informed decision-making 

in load management, generation scheduling, unit commitment, and precise load dispatch. This 

enables grid operators to optimize steady-state operation, enhance system reliability, and reduce 

operational costs. Under forecasting may lead to system overloading or potential blackouts. 

Conversely, over forecasting can result in increased spinning reserve requirements, consequently 

incurring higher operating expenses. Based on the discussion above, machine learning offers a 

promising alternative for improving the accuracy of electric load forecasting. Among the various 

algorithms available, the Recurrent Neural Network (RNN) is one widely used approach 

[19][20][21][22]. This research aims to develop and evaluate RNN models using three training 

algorithms: Levenberg-Marquardt, Scaled Conjugate Gradient, and Bayesian Regularization along 

with various network parameter settings, to identify the most effective configuration for short-term 

electric load forecasting. 

2 Method  

This study utilized MATLAB as the primary tool to support the research process. The materials 

comprised historical electrical load data and forecast data provided by PLN. These data were sourced 

from the Java Madura Bali electricity system, specifically from the distribution areas of Central Java 

and Yogyakarta, obtained through PT. PLN P3B Distribution Office in Central Java and Yogyakarta. 

The dataset consists of 30-minute interval load measurements collected daily. 

The data was organized into seven groups according to the day of the week. Each group was 

further divided into training and testing subsets. To enhance forecasting accuracy, data from national 

holidays were excluded, as load patterns on holidays differ significantly from regular days. This 

research follows several stages to achieve its objectives, as illustrated in Figure 1. 
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Figure 1. Flowchart illustrating the simulation stages for load forecasting with an RNN 

The research materials needed in this study are historical data on electrical loads and load forecast 

data carried out by PLN. The data comes from the Java Madura Bali electricity system in the 

distribution areas of Central Java and Yogyakarta which were obtained from the office of PLN P3B 

distribution in Central Java and DIY. The data needed is the data load per unit 30 minutes every day. 

Historical data on load usage from January to March, shown in Figure 2. Data is classified into seven 

groups of data; each data grouped according to the name of the same day. Each group of data is 

divided into training and testing data. Data on national holidays are omitted to improve forecasting 

accuracy because the characteristics of the use of electrical loads on holidays are different from 

ordinary days. The input data is categorized based on the corresponding day of the week. The 

division is 80% for training data and 20% for testing data. 
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Figure 2. Characteristics of electricity load usage January 2015 – March 2015 per half hour 

After selecting the data, normalization is applied to scale values into the interval [-1, 1], which 

helps improve the efficiency of the learning process. 

2.1 RNN Model Training 

Training on electrical load data is conducted using three algorithms: Levenberg-Marquardt for 

RNN model 1, Bayesian Regularization for RNN model 2, and Scaled Conjugate Gradient for RNN 

model 3. 

a. Levenberg-Marquardt 

The Levenberg-Marquardt algorithm aims to match the speed of second-order methods without 

directly computing the Hessian matrix. For the sum-of-squares performance function, the Hessian 

matrix and gradient are determined by Equations (1) and (2) respectively[23][24], 

𝐻 = 𝐽𝑇𝐽   (1) 

𝑔 = 𝐽𝑇𝑒   (2) 

The Jacobian matrix (𝐽) consists of the first-order partial derivatives of the neural network error 

function with respect to the network’s weights and biases. The vector 𝑒 represents the residual error 

between the network output and the target values. Computing the Jacobian typically involves 

standard backpropagation, which is more computationally intensive than direct Hessian 

approximation. The Levenberg–Marquardt algorithm employs a quasi-linearization strategy by 

approximating the inverse of the Hessian matrix using the Jacobian, as reflected in the iterative 

update formulation akin to Newton’s method (see Equation 3), where 𝑥denotes the vector of 

connection weight parameters. 

𝑥𝑘+1 = 𝑥𝑘 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒  (3) 

When the regularization parameter μ approaches zero, the algorithm approximates Newton’s 

Method using an estimated Hessian, enabling rapid convergence. In contrast, for large values of μ, 

the algorithm behaves more like Gradient Descent with very small step sizes. Newton’s Method is 

known for its quadratic convergence rate and high accuracy near optimal solutions. To leverage this, 

the Levenberg–Marquardt algorithm employs an adaptive strategy that reduces μ after each 

successful iteration and increases it only when the objective function (i.e., the network error) rises. 

This mechanism ensures a generally monotonic decrease in the objective function. By combining 

the fast convergence of Newton’s Method with the stability of Gradient Descent, the Levenberg–
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Marquardt algorithm achieves greater robustness and efficiency than conventional gradient-based 

approaches. 

b. Bayesian Regularization 

Regularization mitigates neural network overfitting. The Bayesian approach is ideal for this task 

because it automatically tunes regularization parameters while retaining the fast convergence of 

traditional backpropagation. The main objective of neural network training is to develop a model 

that maintains low error and performs effectively on unseen data. A model that performs consistently 

on both training and new data is considered to have good generalization. Regularization contributes 

to this by limiting the magnitude of the network’s parameters [25]. 

Regularization improves a model’s ability to generalize by constraining the size of its weights. 

When weights are smaller, the model's output becomes more stable in response to variations in the 

input data. By applying regularization, even a complex neural network can be simplified to better 

approximate the underlying true function. The standard backpropagation method seeks to minimize 

the function 𝐹 = 𝐸𝑑 , where 𝐸𝑑 is determined using Equation (4). 

𝐸𝑑 = ∑ (𝑡𝑖 − 𝑎𝑖)2𝑛
𝑖=1    (4) 

In this context, n is the number of input data in the training set, 𝑡𝑖 is the target value for the i-th 

data point, and 𝑎𝑖 is the output from the neural network with respect to the data. Regularization alters 

the performance function by incorporating the standard deviation of the weights and biases, as 

illustrated in Equation (5) [26][27]. 

𝐹 = 𝛽𝐸𝑑 + 𝛼𝐸𝑤    (5) 

𝛼, 𝛽 are regularization parameters, and 𝐸𝑤 is defined in Equation (6)  

𝐸𝑤 =
1

𝑛
∑ (𝑊𝑖)2𝑛

𝑖=1    (6) 

𝑊𝑖 represents the network’s weights or thresholds. While applying Equation (6) encourages the 

minimization of these weights and thresholds, it does not inherently guarantee effective 

performance. Traditional methods often face challenges in selecting appropriate parameter values. 

To address this, MacKay proposed a Bayesian framework for neural networks that adaptively tunes 

these parameters, enabling improved generalization and model performance. Equation (7) presents 

the formulation for computing the regularization parameters. 

{
𝛼 =

𝛾

2𝐸𝑤

𝛽 =
𝑛−𝛾

2𝐸𝐷

    (7) 

𝛾 = 𝑛 − 2𝛼 𝑡𝑟(𝐻)−1   

where 𝐻 is the Hessian matrix of the performance function F. 

The following outlines the core steps of this approach. 

1) Initialize 𝛼, 𝛽, weights, and biases.  

Minimize the error function based on the Levenberg-Marquardt algorithm using Equation (5). 

2) Compute the Hessian matrix approximation using Equation (8) 

𝐻 = 𝛽𝐽𝑇𝐽 + 𝛼𝐼     (8) 

The value of the effective number of parameters, γ, is then determined using. 

𝛾 = 𝑛 − 2𝛼 𝑡𝑟(𝐻)−1  

3) Update 𝛼, 𝛽 using Equation (8) 

Repeat until the network converges. 
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c. Scaled Conjugate Gradient 

While the standard backpropagation algorithm updates weights via steepest descent (the direction 

of quickest error decrease), this method doesn't guarantee the fastest overall convergence. The 

Conjugate Gradient (CG) algorithm improves upon this by searching along specially chosen 

"conjugate directions." These directions typically accelerate convergence while ensuring that error 

reductions achieved in earlier steps are not undone.  

CG algorithms typically modify the step size during each iteration. To find the optimal step size 

within the conjugate direction and minimize the error function, they perform a line search (Equation 

10). This line search approach is efficient as it avoids the computational burden of calculating the 

Hessian matrix. 

All CG implementations begin the first iteration by using the steepest descent direction (Equation 

9). For subsequent iterations, the new search direction is generated to be conjugate to the previous 

one (Equation 11). This is achieved by combining the current steepest descent gradient with the 

direction used in the prior search steps [28]. 

𝑝𝑜 = −𝑔𝑜   (9) 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑔𝑘    (10) 

𝑝𝑘 = −𝑔𝑘 + 𝛽𝑘𝑝𝑘−1   (11) 

Different versions of the Conjugate Gradient (CG) algorithm vary in how the 𝛽𝑘 is calculated. 

An alternative step-size estimation method is the Scaled Conjugate Gradient (SCG), which 

amalgamates the trust region approach from the Levenberg-Marquardt algorithm with the conjugate 

gradient approach. Introduced by Møller (1993), this method uses Equation (12), where 𝑠 is the 

Hessian approximation, 𝐸 is the aggregate error function, 𝐸′ is the gradient 𝐸 , 𝜆𝑘 and 𝜎𝑘 are scaling 

factors initialized by the user at the algorithm's start so that 0 <𝜆𝑘<10−6 and 0 < 𝜎𝑘 < 10−4. For 

SCG,  𝛽𝑘 computation of the search direction and scaling factor are given in Equations (13) and (14) 

as follows [29]. 

𝑠𝑘 =
𝐸′(𝑤𝑘 𝜎𝑘𝑝𝑘)−𝐸′(𝑤𝑘)

𝜎𝑘
+𝜆𝑘𝑝𝑘   (12) 

𝛽𝑘 =
(|𝑔𝑘+1|2−𝑔𝑘+1

𝑇𝑔𝑘

𝑔𝑘
𝑇𝑔𝑘

   (13) 

𝑝𝑘+1 = −𝑔𝑘+1𝛽𝑘𝑝𝑘    (14) 

SCG updates its design parameters independently at each iteration, which is crucial to its success. 

This gives SCG a main advantage over line-search-based algorithms. 

d. Proposed Architecture Design 

A neural network architecture generally comprises input layers, one or several intermediate layers 

called hidden layers, and an output layer. In this study, the hidden layers were configured with 4, 8, 

12, and 16 neurons. Based on several references, the size of the hidden layer is typically chosen to 

be between the sizes of the input and output layers. In this study, the number of neurons in the hidden 

layer was kept to less than twice that of the input layer. Figure 3 show the recurrent neural network 

architecture. 
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Figure 3. Recurrent neural network architecture 

e. Setting the Parameters 

In this study, the maximum number of epochs was set to 500, with a target error of 0.0001. The 

learning rates tested were 0.01, 0.05, and 0.1. Table 1 summarizes the parameter settings for each 

training algorithm. The Levenberg-Marquardt algorithm uses a damping parameter, initialized at 

0.001, to balance between Gradient Descent and Gauss-Newton methods. The μ is adaptively 

adjusted (decreased by a factor of 0.1 or increased by a factor of 10) to optimize convergence and 

avoid saddle points. Bayesian regularization incorporates Bayesian inference to automatically tune 

the regularization parameters α and β (as shown in Equation 7), penalizing large weights (𝐸𝑤) to 

reduce overfitting by maximizing the model evidence (marginal likelihood). The Scaled Conjugate 

Gradient method avoids explicit Hessian computation by using line searches (Equation 10) and 

conjugate directions. It relies on parameters controlling step size and scaling factors, which are 

crucial for accurately estimating curvature on non-quadratic error surfaces. All algorithms used the 

same maximum epoch of 500 and target error of 0.0001 to ensure a fair comparison. Notably, 

Bayesian regularization starts with a higher initial μ value (0.005), reflecting its focus on 

regularization rather than rapid convergence. 

Table 1. Parameter settings for each training algorithm 

Parameter Configuration 
Levenberg-

Marquardt 

Bayesian 

regularization 

Scaled Conjugate 

Gradient 

Maximum epoch 500 500 500 

Target error/Performance goal 0.001 0.0001 0.0001 

Initial µ 0.001 0.005 N/A 

µ decay factor 0.1 0.1 N/A 

µ growth factor 10 10 N/A 

Maximum µ 1.00 × 10¹⁰ 1.00 × 10¹⁰ N/A 

𝜎0 N/A N/A 5.0 × 10⁻⁵ 

𝜆0 N/A N/A 5.0 × 10⁻⁷ 

2.2 Network Testing  

This study uses data from weeks 2 to 9, totaling 384 records. Prediction accuracy is evaluated 

using several metrics, with the most used being [30]. Mean Absolute Percentage Error (MAPE) 

𝑀𝐴𝑃𝐸 =
1

𝑛

∑ |𝑋𝑡−𝐹𝑡|𝑛
𝑖=1

𝑋𝑡
   (15) 
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Equation (15) defines the Mean Absolute Percentage Error (MAPE): 

Explanation: 

𝑋𝑡 = actual value at time t 

𝐹𝑡= forecasted (simulated) value at time t 

𝑒 = error or difference between ( 𝑋𝑡 and 𝐹𝑡) 

𝑛 = number of observations 

After training and testing, the best-performing network model is selected based on the lowest 

MAPE value. This model is then used to forecast the electricity load one day ahead, and the results 

are compared with those generated by PT. PLN. 

3 Result 

3.1 Simulation Results of the RNN-Based Models 

a. Levenberg-Marquardt Algorithm 

The simulation results show that variations in the number of hidden-layer neurons and learning 

rates led to only minor differences in MAPE values. The optimal configuration by using 8 hidden 

neurons and a learning rate of 0.1 achieved the lowest testing MAPE of 1.0276%. The short training 

time (1 second) and rapid convergence highlight the efficiency of the Levenberg–Marquardt 

algorithm, particularly for convex optimization tasks. Table 2 show the simulation results using the 

levenberg-marquardt algorithm. 

Table 2. Simulation results using the levenberg-marquardt algorithm 

No. 
Neuron Hidden 

Layer 
Target Learning Rate 

MAPE 
Time 

Training Testing 

1 

4 0.0001 

0.01 0.1870 1.1584 1 s 

2 0.05 0.1559 1.0559 1 s 

3 0.1 0.1654 1.1720 1 s 

4 

8 0.0001 

0.1 0.1816 1.1885 1 s 

5 0.5 0.1967 1.1462 1 s 

6 0.1 0.1995 1.0276 1 s 

7 

12 0.0001 

0.01 0.1812 1.0688 1 s 

8 0.05 0.1789 1.0339 1 s 

9 0.1 0.1642 1.2184 1 s 

10 

16 0.0001 

0.01 0.1704 1.0333 1 s 

11 0.05 0.1678 1.0406 1 s 

12 0.1 0.1435 1.0571 1 s 

b. Scaled Conjugate Gradient Algorithm 

The simulation results indicate that changes in the number of artificial neurons in the hidden layer 

and the value of the learning rate resulted in no significant variation in MAPE values. The best 

testing MAPE, 1.0096%, was achieved using 16 hidden neurons with a learning rate of 0.01. Table 

3 show the simulation results using the scaled conjugate gradient algorithm. 

Table 3. Simulation results using the scaled conjugate gradient algorithm 

No. 
Neuron Hidden 

Layer 
Target 

Learning 

Rate 

MAPE 
Time 

Training Testing 

1 

4 0.0001 

0.01 0.2398 1.0718 3 s 

2 0.05 0.1982 1.1006 3 s 

3 0.1 0.2034 1.2673 3 s 

4 

8 0.0001 

0.01 0.2034 1.2673 3 s 

5 0.05 0.2049 1.1002 2 s 

6 0.1 0.1848 1.1217 1 s 

7 

12 0.0001 

0.01 0.1910 1.0815 1 s 

8 0.05 0.1959 1.0423 1 s 

9 0.1 0.1901 1.3025 2 s 

10 

16 0.0001 

0.01 0.1931 1.0096 1 s 

11 0.05 0.1822 1.1588 3 s 

12 0.1 0.1918 1.0840 1 s 
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c. Bayesian Regularization Algorithm 

The simulation results suggest that variations in the number of hidden-layer neurons and learning 

rates led to minimal differences in MAPE values. The optimal configuration consisted of 16 neurons 

with a learning rate of 0.01 and yielded the lowest testing MAPE of 0.9909%. The longer training 

duration of 14 seconds is attributed to Bayesian hyperparameter updates. The narrow train-test 

MAPE gap (approximately 0.8%) demonstrates the effectiveness of Bayesian regularization in 

preventing overfitting. Moreover, Bayesian regularization consistently achieved lower MAPE 

values (≤ 1.0787%) across all architectures, whereas Levenberg–Marquardt and Scaled Conjugate 

Gradient showed greater variability, with train-test differences reaching up to 1.2%. 

Table 4. Simulation results using the bayesian regularization algorithm 

No. 
Neuron Hidden 

Layer 
Target 

Learning 

Rate 

MAPE 
Time 

Training Testing 

1 

4 0.0001 

0.01 0.2033 0.9991 3 s 

2 0.05 0.2033 0.9991 2 s 

3 0.1 0.2033 0.9991 2 s 

4 

8 0.0001 

0.01 0.1995 0.9952 2 s 

5 0.05 0.1944 1.0027 2 s 

6 0.1 0.1993 0.9940 3 s 

7 

12 0.0001 

0.01 0.1929 1.0787 4 s 

8 0.05 0.1967 1.0587 4 s 

9 0.1 0.1960 1.0028 4 s 

10 

16 0.0001 

0.01 0.1972 0.9909 14 s 

11 0.05 0.1921 1.0642 22 s 

12 0.1 0.1927 1.1379 22 s 

3.2 Selection of the Best Architecture and Network Parameters 

This section is a description of the simulation results in section 3.1. where the Bayesian 

regularization training algorithm produces the highest accuracy. The training process yields different 

error values due to variations in the calculation methods of each training algorithm. The rate at which 

these error values change also differs, with some converging quickly and others gradually getting 

more gradually toward a steady state. Daily estimations are performed using test data, and the 

average error over one week is calculated using the MAPE formula. The training algorithm that 

produces the lowest MAPE is selected for this study. 

 
 

 

Figure 4. Linear regression of model 

output versus target values 

Figure 5. Training means squared error (MSE) over 

epochs 

Figure 4 depicts the actual versus predicted load along with R²/RMSE metrics. The high R² value 

(>0.98) indicates a strong linear correlation between the predictions and actual data. However, 

residual patterns suggest a slight model bias, with underprediction occurring during peak loads. 
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Figure 5 illustrates the error reduction during training with Bayesian regularization over 161 epochs. 

The plot shows a sharp initial decline corresponding to the nonlinear optimization phase, followed 

by asymptotic convergence as the gradient approaches zero. The final MSE of approximately 

0.0001, consistent with the values reported in Table 4, along with the absence of spikes, confirms 

the stability and effectiveness of Bayesian regularization. 

 

Figure 6. Training results: predicted load using Bayesian regularization compared to actual data 

Figure 6 shows the training results of the Bayesian regularization model compared to the actual 

load. The close overlap indicates low bias, exemplified by a MAPE of 0.1972% for Monday, 

demonstrating accurate fitting of the training data. Minor deviations at peak and valley points 

suggest slight underfitting. Figure 7 presents the forecasting results, where a high agreement with 

actual data (MAPE of 0.9909%) validates the model’s effectiveness in capturing temporal features 

such as daily load cycles. 

 

Figure 7. Testing results: predicted load using Bayesian regularization compared to actual data 

Bayesian Regularization (BR) demonstrated clear superiority, achieving the lowest test MAPE of 

0.9909% with an 8-16-1 architecture. This outperformed the Levenberg–Marquardt algorithm, 

which recorded a MAPE of 1.0276%, and the Scaled Conjugate Gradient method, with 1.0096%. 
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Regarding architectural impact, both Bayesian Regularization and Scaled Conjugate Gradient 

required 16 neurons in the hidden layer to effectively model temporal dependencies, whereas 

Levenberg–Marquardt achieved optimal results with only 8 neurons, indicating suitability for 

simpler dynamics. In terms of learning rate sensitivity, Bayesian Regularization and Scaled 

Conjugate Gradient performed best at a low learning rate of 0.01, while Levenberg–Marquardt 

achieved optimal performance at a higher learning rate of 0.1. 

Training results showed that the Levenberg–Marquardt algorithm achieved the lowest mean 

training MAPE of 0.1435%, compared to Bayesian Regularization at 0.1921% and Scaled Conjugate 

Gradient at 0.1848%. However, on the test dataset, Levenberg–Marquardt exhibited the highest 

MAPE of 1.0276%. In contrast, Bayesian Regularization attained the lowest test MAPE of 0.9909%, 

followed by Scaled Conjugate Gradient with 1.0096%. Based on these findings, Bayesian 

Regularization was selected as the preferred training algorithm for this study. 

As shown in Table 5, the Levenberg–Marquardt algorithm exhibits the highest average error 

values compared to Bayesian Regularization and Scaled Conjugate Gradient, likely due to its 

excessively rapid convergence. This rapid convergence leads to suboptimal performance, 

particularly with limited datasets like the one used in this study. In contrast, Bayesian Regularization 

demonstrates superior generalization, producing the lowest error values when tested with new input 

data. After evaluating various network architectures and training algorithms, the optimal recurrent 

neural network model was identified with an 8-16-1 architecture and a learning rate of 0.01. This 

model, trained using Bayesian Regularization, achieved the lowest MAPE of 0.9909%, as reported 

in Table 5. 
Table 5. Comparison of best results from each training algorithm 

No. Algorithm Architecture 
Target 

Error 

Learning 

Rate 

MAPE % 

Training Testing 

1 Levenberg-Marquardt 8-8-1 0.0001 0.1 0.1995 1.0276 

2 Bayesian regularization 8-16-1 0.0001 0.01 0.1972 0.9909 

3 scaled conjugate gradient 8-16-1 0.0001 0.01 0.1931 1.0096 

3.3 Load Forecasting Results Using the Selected Models 

The simulation results for overall load estimation are presented in Table 6. During the first week, 

the lowest forecast error (MAPE) of 0.9537% was observed on Friday, while the highest MAPE of 

1.9401% occurred on Saturday. The notable difference between the training MAPE for Saturday 

(0.8367%) and its testing MAPE (1.9401%) suggests that the model did not fully capture the 

complexity of weekend load patterns. 
Table 6. Load forecast results for the first week 

Day Training Testing Time 

Monday  0.1972 0.9909 14 s 

Tuesday 0.5120 1.6952 10 s 

Wednesday 0.3751 1.7629 37 s 

Thursday 0.6455 1.1239 25 s 

Friday 0.5146 0.9537 20 s 

Saturday 0.8367 1.9401 19 s 

Sunday 0.4565 1.5742 36 s 

For the second week, the lowest estimated error (MAPE) was 1.1328%, observed on Monday, as 

shown in Table 7. 
Table 7. Load forecast results for the second week 

Day Training Testing Time 

Monday 0.3563 1.1328 25 s 

Tuesday 0.6187 1.4379 14 s 

Wednesday 0.8115 1.7012 18 s 

Thursday 0.7399 1.4109 15 s 

Friday 0.4553 1.3666 22 s 

Saturday 0.1376 1.3594 12 s 

Sunday 0.1588 1.2689 5 s 
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The superiority of the RNN model is demonstrated by its average MAPE of 1.4084%, compared 

to PLN’s 3.3160%, representing a 57.5% reduction in forecasting error. This improvement indicates 

potential for significant cost savings in power generation. PLN’s limitations are highlighted by its 

highest errors on Monday (5.5448%) and Saturday (4.1951%), likely due to inadequate modeling of 

public holiday effects. In contrast, the RNN model consistently achieves daily MAPE values below 

2%, with a peak of 1.7629% on Wednesday, well within the 5% industry tolerance threshold. Table 

8 presents the overall simulation results for the one-week electricity load forecast alongside PLN’s 

forecast accuracy, comparing MAPE values. 

Table 8. Comparison of MAPE values: RNN vs. PLN 

Day 
MAPE RNN (%) MAPE PLN (%) 

Week 1 Week 2 Week 1 Week 2 

Monday 0.9909 1.1328 2.8273 5.5448 

Tuesday 1.6952 1.4379 3.0174 4.0197 

Wednesday 1.7629 1.7012 3.0755 2.8847 

Thursday 1.1239 1.4109 2.8061 2.6185 

Friday 0.9537 1.3666 3.1788 3.7201 

Saturday 1.9401 1.3594 3.3138 4.1951 

Sunday 1.5742 1.2689 2.3546 2.8676 

Average 
1.4344 1.3825 2.9391 3.6929 

1.4084 3.3160 

PLN’s load forecasting exhibited variable MAPE performance. During the first week, forecasts 

ranged from a minimum MAPE of 2.3138% to a maximum of 3.3138%, with a weekly average of 

2.9391%, which remains below the 5% industry tolerance threshold. In the second week, MAPE 

values varied between 2.6185% and 5.5448%, resulting in a weekly average of 3.6929%. The overall 

two-week forecast MAPE for PLN was 3.3160%. 

In contrast, the RNN-based forecasting model consistently produced lower daily MAPE values. 

The most accurate prediction during the first week was on Friday with a MAPE of 0.9537%, while 

the highest error was on Saturday at 1.9401%, leading to a weekly average MAPE of 1.4344%. In 

the second week, the RNN model’s MAPE ranged from 1.1328% on Monday to 1.7012% on 

Wednesday, with a weekly average of 1.3825%. The consolidated two-week MAPE for the RNN 

model was 1.4084%. These performance differences are illustrated in Figure 8 and Figure 9. 

 

Figure 8. Comparison of load forecast results for the first week between RNN model and PLN 
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Figure 9. Comparison of the load forecast results for the second week between RNN model and PLN 

As shown in Figure 8 and Figure 9, the RNN-based forecasts consistently produce lower MAPE 

values than PLN’s forecasts. Moreover, the RNN’s MAPE remains well below the 5% tolerance 

threshold for load forecast deviation, indicating superior accuracy. These results suggest that 

implementing RNN for load forecasting can enhance both the reliability and economic efficiency of 

the electrical system. 

4 Discussion 

The findings of this study highlight overfitting as a common challenge in neural network training. 

Although the training error can be minimized to very small values, the error tends to increase 

significantly when the model is tested on new data. This occurs because the network memorizes the 

training samples without learning to generalize to unseen situations. Techniques such as early 

stopping and regularization are effective in promoting generalization. In this study, early stopping 

was implemented with a target error of 0.0001. Using Bayesian regularization with an 8-16-1 

architecture, the model achieved the lowest MAPE of 0.9909%, demonstrating strong 

generalization. This improvement is attributed to the adjustment of regularization parameters α and 

β (see Eq. 7), which help mitigate overfitting [26][27]. 

The model’s accuracy decreases during weekends and holidays due to irregular consumption 

patterns. Nevertheless, the RNN achieved a 57% lower error compared to PLN’s forecast, 

demonstrating the effectiveness of AI-based approaches for short-term load forecasting. Based on 

these findings, it is recommended that PLN adopt the Bayesian regularization RNN model to 

optimize electricity generation, thereby reducing overproduction and operational costs. 

Additionally, preprocessing the data by grouping national holiday data separately could enhance 

prediction accuracy for these irregular days. 

This study has some limitations. The data is limited to Central Java and Yogyakarta, so validation 

in other regions with different load patterns (such as those in island areas) is necessary. Excluding 

holiday data to reduce noise may impair forecast accuracy during anomalous periods; integrating a 

holiday calendar as an input feature is suggested as a solution. Parameter settings were constrained 

during testing: the maximum epoch was set to 500, target error at 0.0001, learning rates were varied 

(0.01, 0.05, and 0.1), and hidden neurons were tested at 4, 8, 12, and 16. 

For future research, deeper architectures such as Deep Recurrent Neural Networks could be 

explored by increasing hidden layers. Hybrid models that combine RNN with LSTM or GRU may 

better capture long-term dependencies. Incorporating k-fold cross-validation can improve model 

stability assessment. Further, integrating statistical methods like ARIMA could capture both linear 

and nonlinear patterns. To further improve the model performance, supplementary data such as 

holidays events, weather reports, and economic patterns could be incorporated. Ultimately, to 
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improve forecasting accuracy, one can implement autotuning that is based on dynamic optimization 

via reinforcement learning to auto-tune the hyperparameter. 

5 Conclusion 

This study confirms that Recurrent Neural Networks (RNNs) are highly effective for short-term 

electricity load forecasting. In this study, we tested three training algorithms. Bayesian 

regularization came out on top, using an 8-16-1 network and a learning rate of 0.01, proved optimal 

for short-term load forecasting, achieving a two-week MAPE of 1.4084%, which represents a 57% 

improvement over PLN’s conventional methods. These findings underscore the transformative 

potential of AI-driven forecasting systems for PLN, while also highlighting the need for further 

research on dynamic data integration and regional scalability. 
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