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Abstract—Accurate short-term electricity load forecasting is critical for planning power
generation and maintaining cost efficiency. Since the amount of electricity generated
significantly affects the cost-efficiency of power generation, a forecasting method with high
accuracy is required. In response, this study developed a Recurrent Neural Network (RNN)
model architecture trained using three different algorithms: Levenberg-Marquardt, Bayesian
Regularization, and Scaled Conjugate Gradient. The model's performance was evaluated using
the Mean Absolute Percentage Error (MAPE) metric. Historical load data were categorized by
day type and divided into training and testing sets. The best-performing RNN model was used
to carry out load forecasting, which was then compared to the forecasting results from PT PLN.
Among the models tested, the RNN trained with Bayesian Regularization, configured with an
8-16-1 network architecture using a learning rate of 0.01 achieved the highest accuracy. In a
two-week forecasting simulation, this model reached a MAPE of 1.4084%, significantly
outperforming the 3.3160% error from PLN’s conventional forecasting method. These results
underpin the effectiveness of RNNs, particularly when trained with Bayesian Regularization,
for enhancing short-term electricity load forecasting within the scope of this dataset.
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1 Introduction

The amount of electric power generated has a significant impact on the cost efficiency of
electricity production, making accurate load forecasting essential [ 1]. Proper forecasting ensures that
the supply of electricity aligns with demand, minimizing both excess generation and shortages. As
the state-owned utility responsible for electricity supply and distribution in Indonesia, the State
Electricity Company (PLN) must carry out comprehensive load planning. This includes forecasting
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to ensure that electricity generation closely matches real-time demand, optimizing resource use and
system stability.

A key component of this planning process is Short-Term Load Forecasting (STLF), which is
crucial but also presents complex challenges [2]. With ongoing technological advancements, STLF
methods have evolved and are typically grouped into two main categories: conventional and non-
conventional approaches. Conventional methods often rely on statistical techniques such as
regression analysis and time series models, with popular examples including Autoregressive
Integrated Moving Average (ARIMA) and the Holt-Winters exponential smoothing.

In contrast, recent studies have increasingly centered on Artificial Intelligence (AI) and Machine
Learning (ML) approaches for load forecasting. Models such as the Convolutional Long Short-Term
Memory (ConvLSTM) network [3], Long Short-Term Memory (LSTM) neural networks [4][5],
LSTM combined with residual networks [6], LSTM-RNN hybrids [7], Deep Neural Networks
(DNN) [8][9], Quantile LSTM networks [10], TCN-LSTM architectures [11], and Deep Recurrent
Neural Networks (DRNN) [12] have shown promising results. These ML-based models often
outperform traditional methods [13][14], largely due to their ability to capture complex, nonlinear
patterns that conventional models struggle to address [15][16].

Several prior studies have examined the performance of different neural network architectures
for STLF, including the Backpropagation Neural Network (BPNN), Elman Neural Network, Fuzzy
Neural Network, and Wavelet Neural Network. Among these, BPNN was found to produce the most
accurate predictions for short-term load forecasting [17]. Similarly, applied Recurrent Neural
Networks (RNNs) demonstrated improved forecasting accuracy, with Mean Absolute Percentage
Errors (MAPE) of 7.22% using 10 hidden neurons, 7.13% with 20 neurons, and 6.98% with 30
neurons, respectively. Compared to the feedforward neural network model, which had MAPE values
0f 9.05% with 10 hidden layers, 8.71% with 20 hidden layers, and 8.92% with 30 hidden layers. The
training algorithm used was Levenberg-Marquardt [18].

Short-Term Load Forecasting (STLF) provides critical input to ensure informed decision-making
in load management, generation scheduling, unit commitment, and precise load dispatch. This
enables grid operators to optimize steady-state operation, enhance system reliability, and reduce
operational costs. Under forecasting may lead to system overloading or potential blackouts.
Conversely, over forecasting can result in increased spinning reserve requirements, consequently
incurring higher operating expenses. Based on the discussion above, machine learning offers a
promising alternative for improving the accuracy of electric load forecasting. Among the various
algorithms available, the Recurrent Neural Network (RNN) is one widely used approach
[19][20][21][22]. This research aims to develop and evaluate RNN models using three training
algorithms: Levenberg-Marquardt, Scaled Conjugate Gradient, and Bayesian Regularization along
with various network parameter settings, to identify the most effective configuration for short-term
electric load forecasting.

2 Method

This study utilized MATLAB as the primary tool to support the research process. The materials
comprised historical electrical load data and forecast data provided by PLN. These data were sourced
from the Java Madura Bali electricity system, specifically from the distribution areas of Central Java
and Yogyakarta, obtained through PT. PLN P3B Distribution Office in Central Java and Yogyakarta.
The dataset consists of 30-minute interval load measurements collected daily.

The data was organized into seven groups according to the day of the week. Each group was
further divided into training and testing subsets. To enhance forecasting accuracy, data from national
holidays were excluded, as load patterns on holidays differ significantly from regular days. This
research follows several stages to achieve its objectives, as illustrated in Figure 1.
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Figure 1. Flowchart illustrating the simulation stages for load forecasting with an RNN

The research materials needed in this study are historical data on electrical loads and load forecast
data carried out by PLN. The data comes from the Java Madura Bali electricity system in the
distribution areas of Central Java and Yogyakarta which were obtained from the office of PLN P3B
distribution in Central Java and DIY. The data needed is the data load per unit 30 minutes every day.
Historical data on load usage from January to March, shown in Figure 2. Data is classified into seven
groups of data; each data grouped according to the name of the same day. Each group of data is
divided into training and testing data. Data on national holidays are omitted to improve forecasting
accuracy because the characteristics of the use of electrical loads on holidays are different from
ordinary days. The input data is categorized based on the corresponding day of the week. The
division is 80% for training data and 20% for testing data.
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Figure 2. Characteristics of electricity load usage January 2015 — March 2015 per half hour

After selecting the data, normalization is applied to scale values into the interval [-1, 1], which
helps improve the efficiency of the learning process.

2.1 RNN Model Training

Training on electrical load data is conducted using three algorithms: Levenberg-Marquardt for
RNN model 1, Bayesian Regularization for RNN model 2, and Scaled Conjugate Gradient for RNN
model 3.

a. Levenberg-Marquardt

The Levenberg-Marquardt algorithm aims to match the speed of second-order methods without
directly computing the Hessian matrix. For the sum-of-squares performance function, the Hessian
matrix and gradient are determined by Equations (1) and (2) respectively[23][24],

H=]"] (1)
g=J"e 2)

The Jacobian matrix (J) consists of the first-order partial derivatives of the neural network error
function with respect to the network’s weights and biases. The vector e represents the residual error
between the network output and the target values. Computing the Jacobian typically involves
standard backpropagation, which is more computationally intensive than direct Hessian
approximation. The Levenberg—Marquardt algorithm employs a quasi-linearization strategy by
approximating the inverse of the Hessian matrix using the Jacobian, as reflected in the iterative
update formulation akin to Newton’s method (see Equation 3), where xdenotes the vector of
connection weight parameters.

Xir1 = X — [JT] + Il e 3)

When the regularization parameter p approaches zero, the algorithm approximates Newton’s
Method using an estimated Hessian, enabling rapid convergence. In contrast, for large values of ,
the algorithm behaves more like Gradient Descent with very small step sizes. Newton’s Method is
known for its quadratic convergence rate and high accuracy near optimal solutions. To leverage this,
the Levenberg—Marquardt algorithm employs an adaptive strategy that reduces p after each
successful iteration and increases it only when the objective function (i.e., the network error) rises.
This mechanism ensures a generally monotonic decrease in the objective function. By combining
the fast convergence of Newton’s Method with the stability of Gradient Descent, the Levenberg—

https://journal.uny.ac.id/index.php/jee 117


https://journal.uny.ac.id/index.php/jee

Jurnal Edukasi Elektro, Vol. 9, No. 2, November 2025 E-ISSN: 2548-8260

Marquardt algorithm achieves greater robustness and efficiency than conventional gradient-based
approaches.

b. Bayesian Regularization

Regularization mitigates neural network overfitting. The Bayesian approach is ideal for this task
because it automatically tunes regularization parameters while retaining the fast convergence of
traditional backpropagation. The main objective of neural network training is to develop a model
that maintains low error and performs effectively on unseen data. A model that performs consistently
on both training and new data is considered to have good generalization. Regularization contributes
to this by limiting the magnitude of the network’s parameters [25].

Regularization improves a model’s ability to generalize by constraining the size of its weights.
When weights are smaller, the model's output becomes more stable in response to variations in the
input data. By applying regularization, even a complex neural network can be simplified to better
approximate the underlying true function. The standard backpropagation method seeks to minimize
the function F = E;, where E; is determined using Equation (4).

Eq =Y, (t — a;)* 4

In this context, n is the number of input data in the training set, ¢; is the target value for the i-th
data point, and q; is the output from the neural network with respect to the data. Regularization alters
the performance function by incorporating the standard deviation of the weights and biases, as
illustrated in Equation (5) [26][27].

F=pE;+ aE, 5)
a, [ are regularization parameters, and E,, is defined in Equation (6)

1
By = 20, (W))? (6)

W; represents the network’s weights or thresholds. While applying Equation (6) encourages the
minimization of these weights and thresholds, it does not inherently guarantee effective
performance. Traditional methods often face challenges in selecting appropriate parameter values.
To address this, MacKay proposed a Bayesian framework for neural networks that adaptively tunes
these parameters, enabling improved generalization and model performance. Equation (7) presents
the formulation for computing the regularization parameters.

a=
2Ey

g =" (7
- 2Ep

y=n—-2atr(H)™?

where H is the Hessian matrix of the performance function F.
The following outlines the core steps of this approach.
1) [Initialize a, 8, weights, and biases.
Minimize the error function based on the Levenberg-Marquardt algorithm using Equation (5).
2) Compute the Hessian matrix approximation using Equation (8)

H=p]"]+al (8)
The value of the effective number of parameters, v, is then determined using.
y=n-2atr(H)™?

3) Update «, B using Equation (8)
Repeat until the network converges.
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c. Scaled Conjugate Gradient

While the standard backpropagation algorithm updates weights via steepest descent (the direction
of quickest error decrease), this method doesn't guarantee the fastest overall convergence. The
Conjugate Gradient (CG) algorithm improves upon this by searching along specially chosen
"conjugate directions." These directions typically accelerate convergence while ensuring that error
reductions achieved in earlier steps are not undone.

CG algorithms typically modify the step size during each iteration. To find the optimal step size
within the conjugate direction and minimize the error function, they perform a line search (Equation
10). This line search approach is efficient as it avoids the computational burden of calculating the
Hessian matrix.

All CG implementations begin the first iteration by using the steepest descent direction (Equation
9). For subsequent iterations, the new search direction is generated to be conjugate to the previous
one (Equation 11). This is achieved by combining the current steepest descent gradient with the
direction used in the prior search steps [28].

Po = —Yo )
Xp+1 = X + A Gi (10)
Pk = =gk + BrPr-1 (11)

Different versions of the Conjugate Gradient (CG) algorithm vary in how the S} is calculated.

An alternative step-size estimation method is the Scaled Conjugate Gradient (SCG), which
amalgamates the trust region approach from the Levenberg-Marquardt algorithm with the conjugate
gradient approach. Introduced by Meller (1993), this method uses Equation (12), where s is the
Hessian approximation, E is the aggregate error function, E' is the gradient E , A;, and g}, are scaling
factors initialized by the user at the algorithm's start so that 0 <1, <107® and 0 < g, < 10™*. For
SCG, By computation of the search direction and scaling factor are given in Equations (13) and (14)
as follows [29].

5 = %W_}_Akpk (12)
(1gk+11*~gk+1" gk
_ kesP-geesTok 1
B kT 9Kk -
Pk+1 = —Gr+1PiPr (19

SCG updates its design parameters independently at each iteration, which is crucial to its success.
This gives SCG a main advantage over line-search-based algorithms.

d. Proposed Architecture Design

A neural network architecture generally comprises input layers, one or several intermediate layers
called hidden layers, and an output layer. In this study, the hidden layers were configured with 4, 8,
12, and 16 neurons. Based on several references, the size of the hidden layer is typically chosen to
be between the sizes of the input and output layers. In this study, the number of neurons in the hidden
layer was kept to less than twice that of the input layer. Figure 3 show the recurrent neural network
architecture.
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Figure 3. Recurrent neural network architecture

e. Setting the Parameters

In this study, the maximum number of epochs was set to 500, with a target error of 0.0001. The
learning rates tested were 0.01, 0.05, and 0.1. Table 1 summarizes the parameter settings for each
training algorithm. The Levenberg-Marquardt algorithm uses a damping parameter, initialized at
0.001, to balance between Gradient Descent and Gauss-Newton methods. The p is adaptively
adjusted (decreased by a factor of 0.1 or increased by a factor of 10) to optimize convergence and
avoid saddle points. Bayesian regularization incorporates Bayesian inference to automatically tune
the regularization parameters o and B (as shown in Equation 7), penalizing large weights (E,,) to
reduce overfitting by maximizing the model evidence (marginal likelihood). The Scaled Conjugate
Gradient method avoids explicit Hessian computation by using line searches (Equation 10) and
conjugate directions. It relies on parameters controlling step size and scaling factors, which are
crucial for accurately estimating curvature on non-quadratic error surfaces. All algorithms used the
same maximum epoch of 500 and target error of 0.0001 to ensure a fair comparison. Notably,
Bayesian regularization starts with a higher initial p value (0.005), reflecting its focus on
regularization rather than rapid convergence.

Table 1. Parameter settings for each training algorithm

. Levenberg- Bayesian Scaled Conjugate
Parameter Configuration Marquargt regulz):rization Gradieiltg

Maximum epoch 500 500 500
Target error/Performance goal 0.001 0.0001 0.0001
Initial p 0.001 0.005 N/A
W decay factor 0.1 0.1 N/A
u growth factor 10 10 N/A
Maximum p 1.00 x 10'° 1.00 x 10'° N/A

gy N/A N/A 5.0x10"°

Ao N/A N/A 5.0x107

2.2 Network Testing

This study uses data from weeks 2 to 9, totaling 384 records. Prediction accuracy is evaluated
using several metrics, with the most used being [30]. Mean Absolute Percentage Error (MAPE)

MAPE = 12X Fil (15)
- n Xt
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Equation (15) defines the Mean Absolute Percentage Error (MAPE):

Explanation:

X; = actual value at time ¢

F;= forecasted (simulated) value at time ¢

e = error or difference between ( X; and F;)

n = number of observations

After training and testing, the best-performing network model is selected based on the lowest
MAPE value. This model is then used to forecast the electricity load one day ahead, and the results
are compared with those generated by PT. PLN.

3 Result

3.1 Simulation Results of the RNN-Based Models
a. Levenberg-Marquardt Algorithm

The simulation results show that variations in the number of hidden-layer neurons and learning
rates led to only minor differences in MAPE values. The optimal configuration by using 8 hidden
neurons and a learning rate of 0.1 achieved the lowest testing MAPE of 1.0276%. The short training
time (1 second) and rapid convergence highlight the efficiency of the Levenberg—Marquardt
algorithm, particularly for convex optimization tasks. Table 2 show the simulation results using the
levenberg-marquardt algorithm.

Table 2. Simulation results using the levenberg-marquardt algorithm

No. NeurE:)g;dden Target | Learning Rate Trainin;/[APETesting Time
1 0.01 0.1870 1.1584 ls
2 4 0.0001 0.05 0.1559 1.0559 ls
3 0.1 0.1654 1.1720 ls
4 0.1 0.1816 1.1885 ls
5 8 0.0001 0.5 0.1967 1.1462 ls
6 0.1 0.1995 1.0276 ls
7 0.01 0.1812 1.0688 ls
8 12 0.0001 0.05 0.1789 1.0339 ls
9 0.1 0.1642 1.2184 1s
10 0.01 0.1704 1.0333 ls
11 16 0.0001 0.05 0.1678 1.0406 ls
12 0.1 0.1435 1.0571 ls

b. Scaled Conjugate Gradient Algorithm

The simulation results indicate that changes in the number of artificial neurons in the hidden layer
and the value of the learning rate resulted in no significant variation in MAPE values. The best
testing MAPE, 1.0096%, was achieved using 16 hidden neurons with a learning rate of 0.01. Table
3 show the simulation results using the scaled conjugate gradient algorithm.

Table 3. Simulation results using the scaled conjugate gradient algorithm

No Neuron Hidden Target Learning MAPE Time
) Layer Rate Training Testing
1 0.01 0.2398 1.0718 3s
2 4 0.0001 0.05 0.1982 1.1006 3s
3 0.1 0.2034 1.2673 3s
4 0.01 0.2034 1.2673 3s
5 8 0.0001 0.05 0.2049 1.1002 2s
6 0.1 0.1848 1.1217 ls
7 0.01 0.1910 1.0815 ls
8 12 0.0001 0.05 0.1959 1.0423 ls
9 0.1 0.1901 1.3025 2s
10 0.01 0.1931 1.0096 ls
11 16 0.0001 0.05 0.1822 1.1588 3s
12 0.1 0.1918 1.0840 Is
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c. Bayesian Regularization Algorithm

The simulation results suggest that variations in the number of hidden-layer neurons and learning
rates led to minimal differences in MAPE values. The optimal configuration consisted of 16 neurons
with a learning rate of 0.01 and yielded the lowest testing MAPE of 0.9909%. The longer training
duration of 14 seconds is attributed to Bayesian hyperparameter updates. The narrow train-test
MAPE gap (approximately 0.8%) demonstrates the effectiveness of Bayesian regularization in
preventing overfitting. Moreover, Bayesian regularization consistently achieved lower MAPE
values (< 1.0787%) across all architectures, whereas Levenberg—Marquardt and Scaled Conjugate
Gradient showed greater variability, with train-test differences reaching up to 1.2%.

Table 4. Simulation results using the bayesian regularization algorithm

No. Neuron Hidden Target Learning MAPE Time
Layer Rate Training Testing
1 0.01 0.2033 0.9991 3s
2 4 0.0001 0.05 0.2033 0.9991 2s
3 0.1 0.2033 0.9991 2s
4 0.01 0.1995 0.9952 2s
5 8 0.0001 0.05 0.1944 1.0027 2s
6 0.1 0.1993 0.9940 3s
7 0.01 0.1929 1.0787 4s
8 12 0.0001 0.05 0.1967 1.0587 4s
9 0.1 0.1960 1.0028 4s
10 0.01 0.1972 0.9909 14s
11 16 0.0001 0.05 0.1921 1.0642 22s
12 0.1 0.1927 1.1379 22s

3.2 Selection of the Best Architecture and Network Parameters

This section is a description of the simulation results in section 3.1. where the Bayesian
regularization training algorithm produces the highest accuracy. The training process yields different
error values due to variations in the calculation methods of each training algorithm. The rate at which
these error values change also differs, with some converging quickly and others gradually getting
more gradually toward a steady state. Daily estimations are performed using test data, and the
average error over one week is calculated using the MAPE formula. The training algorithm that
produces the lowest MAPE is selected for this study.

. Best Training Performance is 9.9216e-05 at epoch 161
Regression: R=0.99984
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Figure 4. Linear regression of model Figure 5. Training means squared error (MSE) over
output versus target values epochs

Figure 4 depicts the actual versus predicted load along with R%RMSE metrics. The high R? value
(>0.98) indicates a strong linear correlation between the predictions and actual data. However,
residual patterns suggest a slight model bias, with underprediction occurring during peak loads.
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Figure 5 illustrates the error reduction during training with Bayesian regularization over 161 epochs.
The plot shows a sharp initial decline corresponding to the nonlinear optimization phase, followed
by asymptotic convergence as the gradient approaches zero. The final MSE of approximately
0.0001, consistent with the values reported in Table 4, along with the absence of spikes, confirms
the stability and effectiveness of Bayesian regularization.

RNN vs Target output graph with MAPE value = 0.1972
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Figure 6. Training results: predicted load using Bayesian regularization compared to actual data

Figure 6 shows the training results of the Bayesian regularization model compared to the actual
load. The close overlap indicates low bias, exemplified by a MAPE of 0.1972% for Monday,
demonstrating accurate fitting of the training data. Minor deviations at peak and valley points
suggest slight underfitting. Figure 7 presents the forecasting results, where a high agreement with
actual data (MAPE of 0.9909%) validates the model’s effectiveness in capturing temporal features
such as daily load cycles.
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Figure 7. Testing results: predicted load using Bayesian regularization compared to actual data
Bayesian Regularization (BR) demonstrated clear superiority, achieving the lowest test MAPE of

0.9909% with an 8-16-1 architecture. This outperformed the Levenberg—Marquardt algorithm,
which recorded a MAPE of 1.0276%, and the Scaled Conjugate Gradient method, with 1.0096%.
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Regarding architectural impact, both Bayesian Regularization and Scaled Conjugate Gradient
required 16 neurons in the hidden layer to effectively model temporal dependencies, whereas
Levenberg—Marquardt achieved optimal results with only 8 neurons, indicating suitability for
simpler dynamics. In terms of learning rate sensitivity, Bayesian Regularization and Scaled
Conjugate Gradient performed best at a low learning rate of 0.01, while Levenberg—Marquardt
achieved optimal performance at a higher learning rate of 0.1.

Training results showed that the Levenberg—Marquardt algorithm achieved the lowest mean
training MAPE of 0.1435%, compared to Bayesian Regularization at 0.1921% and Scaled Conjugate
Gradient at 0.1848%. However, on the test dataset, Levenberg—Marquardt exhibited the highest
MAPE of 1.0276%. In contrast, Bayesian Regularization attained the lowest test MAPE of 0.9909%,
followed by Scaled Conjugate Gradient with 1.0096%. Based on these findings, Bayesian
Regularization was selected as the preferred training algorithm for this study.

As shown in Table 5, the Levenberg—Marquardt algorithm exhibits the highest average error
values compared to Bayesian Regularization and Scaled Conjugate Gradient, likely due to its
excessively rapid convergence. This rapid convergence leads to suboptimal performance,
particularly with limited datasets like the one used in this study. In contrast, Bayesian Regularization
demonstrates superior generalization, producing the lowest error values when tested with new input
data. After evaluating various network architectures and training algorithms, the optimal recurrent
neural network model was identified with an 8-16-1 architecture and a learning rate of 0.01. This
model, trained using Bayesian Regularization, achieved the lowest MAPE of 0.9909%, as reported
in Table 5.

Table 5. Comparison of best results from each training algorithm

. . Target | Learnin MAPE %
No. Algorithm Architecture Err%r Rate g Training Testing
1 Levenberg-Marquardt 8-8-1 0.0001 0.1 0.1995 1.0276
2 Bayesian regularization 8-16-1 0.0001 0.01 0.1972 0.9909
3 scaled conjugate gradient 8-16-1 0.0001 0.01 0.1931 1.0096

3.3 Load Forecasting Results Using the Selected Models

The simulation results for overall load estimation are presented in Table 6. During the first week,
the lowest forecast error (MAPE) of 0.9537% was observed on Friday, while the highest MAPE of
1.9401% occurred on Saturday. The notable difference between the training MAPE for Saturday
(0.8367%) and its testing MAPE (1.9401%) suggests that the model did not fully capture the

complexity of weekend load patterns.
Table 6. Load forecast results for the first week

Day Training Testing Time
Monday 0.1972 0.9909 14 s
Tuesday 0.5120 1.6952 10s
Wednesday | 0.3751 1.7629 37s
Thursday 0.6455 1.1239 25s
Friday 0.5146 0.9537 20s
Saturday 0.8367 1.9401 19s
Sunday 0.4565 1.5742 36s

For the second week, the lowest estimated error (MAPE) was 1.1328%, observed on Monday, as

shown in Table 7.

Table 7. Load forecast results for the second week

Day Training Testing Time
Monday 0.3563 1.1328 25s
Tuesday 0.6187 1.4379 145
Wednesday | 0.8115 1.7012 18s
Thursday 0.7399 1.4109 155
Friday 0.4553 1.3666 22's
Saturday 0.1376 1.3594 12s
Sunday 0.1588 1.2689 Ss
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The superiority of the RNN model is demonstrated by its average MAPE of 1.4084%, compared
to PLN’s 3.3160%, representing a 57.5% reduction in forecasting error. This improvement indicates
potential for significant cost savings in power generation. PLN’s limitations are highlighted by its
highest errors on Monday (5.5448%) and Saturday (4.1951%), likely due to inadequate modeling of
public holiday effects. In contrast, the RNN model consistently achieves daily MAPE values below
2%, with a peak of 1.7629% on Wednesday, well within the 5% industry tolerance threshold. Table
8 presents the overall simulation results for the one-week electricity load forecast alongside PLN’s
forecast accuracy, comparing MAPE values.

Table 8. Comparison of MAPE values: RNN vs. PLN

Day MAPE RNN (%) MAPE PLN (%)
Week 1 Week 2 Week 1 Week 2
Monday 0.9909 1.1328 2.8273 5.5448
Tuesday 1.6952 1.4379 3.0174 4.0197
Wednesday 1.7629 1.7012 3.0755 2.8847
Thursday 1.1239 1.4109 2.8061 2.6185
Friday 0.9537 1.3666 3.1788 3.7201
Saturday 1.9401 1.3594 3.3138 4.1951
Sunday 1.5742 1.2689 2.3546 2.8676
Average 1.4344 1.3825 2.9391 3.6929

1.4084 3.3160

PLN’s load forecasting exhibited variable MAPE performance. During the first week, forecasts
ranged from a minimum MAPE of 2.3138% to a maximum of 3.3138%, with a weekly average of
2.9391%, which remains below the 5% industry tolerance threshold. In the second week, MAPE
values varied between 2.6185% and 5.5448%, resulting in a weekly average of 3.6929%. The overall
two-week forecast MAPE for PLN was 3.3160%.

In contrast, the RNN-based forecasting model consistently produced lower daily MAPE values.
The most accurate prediction during the first week was on Friday with a MAPE of 0.9537%, while
the highest error was on Saturday at 1.9401%, leading to a weekly average MAPE of 1.4344%. In
the second week, the RNN model’s MAPE ranged from 1.1328% on Monday to 1.7012% on
Wednesday, with a weekly average of 1.3825%. The consolidated two-week MAPE for the RNN
model was 1.4084%. These performance differences are illustrated in Figure 8 and Figure 9.
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Figure 8. Comparison of load forecast results for the first week between RNN model and PLN
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Figure 9. Comparison of the load forecast results for the second week between RNN model and PLN

As shown in Figure 8 and Figure 9, the RNN-based forecasts consistently produce lower MAPE
values than PLN’s forecasts. Moreover, the RNN’s MAPE remains well below the 5% tolerance
threshold for load forecast deviation, indicating superior accuracy. These results suggest that
implementing RNN for load forecasting can enhance both the reliability and economic efficiency of
the electrical system.

4 Discussion

The findings of this study highlight overfitting as a common challenge in neural network training.
Although the training error can be minimized to very small values, the error tends to increase
significantly when the model is tested on new data. This occurs because the network memorizes the
training samples without learning to generalize to unseen situations. Techniques such as early
stopping and regularization are effective in promoting generalization. In this study, early stopping
was implemented with a target error of 0.0001. Using Bayesian regularization with an 8-16-1
architecture, the model achieved the lowest MAPE of 0.9909%, demonstrating strong
generalization. This improvement is attributed to the adjustment of regularization parameters o and
B (see Eq. 7), which help mitigate overfitting [26][27].

The model’s accuracy decreases during weekends and holidays due to irregular consumption
patterns. Nevertheless, the RNN achieved a 57% lower error compared to PLN’s forecast,
demonstrating the effectiveness of Al-based approaches for short-term load forecasting. Based on
these findings, it is recommended that PLN adopt the Bayesian regularization RNN model to
optimize electricity generation, thereby reducing overproduction and operational costs.
Additionally, preprocessing the data by grouping national holiday data separately could enhance
prediction accuracy for these irregular days.

This study has some limitations. The data is limited to Central Java and Yogyakarta, so validation
in other regions with different load patterns (such as those in island areas) is necessary. Excluding
holiday data to reduce noise may impair forecast accuracy during anomalous periods; integrating a
holiday calendar as an input feature is suggested as a solution. Parameter settings were constrained
during testing: the maximum epoch was set to 500, target error at 0.0001, learning rates were varied
(0.01, 0.05, and 0.1), and hidden neurons were tested at 4, 8, 12, and 16.

For future research, deeper architectures such as Deep Recurrent Neural Networks could be
explored by increasing hidden layers. Hybrid models that combine RNN with LSTM or GRU may
better capture long-term dependencies. Incorporating k-fold cross-validation can improve model
stability assessment. Further, integrating statistical methods like ARIMA could capture both linear
and nonlinear patterns. To further improve the model performance, supplementary data such as
holidays events, weather reports, and economic patterns could be incorporated. Ultimately, to
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improve forecasting accuracy, one can implement autotuning that is based on dynamic optimization
via reinforcement learning to auto-tune the hyperparameter.

5 Conclusion

This study confirms that Recurrent Neural Networks (RNNs) are highly effective for short-term
electricity load forecasting. In this study, we tested three training algorithms. Bayesian
regularization came out on top, using an 8-16-1 network and a learning rate of 0.01, proved optimal
for short-term load forecasting, achieving a two-week MAPE of 1.4084%, which represents a 57%
improvement over PLN’s conventional methods. These findings underscore the transformative
potential of Al-driven forecasting systems for PLN, while also highlighting the need for further
research on dynamic data integration and regional scalability.
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