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Article Info Abstract

AC motors are critical assets in water treatment plants because they
operate continuously to drive key processes. Reactive or schedule-
based maintenance can miss early degradation and increase the risk of
unplanned downtime. This study presents a field implementation of an
Internet of Things (IoT)-based predictive maintenance system in a
WTP. The system integrates vibration, temperature, and rotational
speed (RPM) sensors with a cloud-based IoT pipeline for real-time
data acquisition. Operational data were collected for 30 days from a
IoT; Predictive  maintenance; single motor unit and analyzed using Random Forest and Long Short-
Water treatment plant; AC motor; Term Memory models. To address limited abnormal-event data,
LSTM; GAN augmentation. Generative Adversarial Network (GAN)-based augmentation was
applied during training. The results show that LSTM performed more
consistently than Random Forest; after augmentation, the F1-score
improved from 0.92 to 0.95. The monitoring data also captured
warning-level changes during operation, including vibration up to 3.9
mm/s, temperature up to 95 °C, and rotational speed dropping to
around 1420 RPM, which may indicate abnormal operating conditions
requiring inspection. Given the single-unit scope and short duration,
the findings are reported as an initial implementation case study.
Nevertheless, the work demonstrates the feasibility of a low-cost IoT-
based monitoring and prediction framework to support maintenance
decisions in WTP operations.
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INTRODUCTION

Water treatment plants (WTPs) are expected to run continuously and deliver stable water quality
despite changes in raw-water conditions and daily operational demands [1], [2]. In practice, the
reliability of a WTP is also shaped by the reliability of its rotating equipment—especially AC motors
that drive pumps, mixers, and agitators. When one of these motors starts to degrade, the impact is rarely
limited to the motor itself: the disturbance can propagate into process interruptions, delayed treatment
steps, and additional costs related to unplanned maintenance actions and production losses [3].

In many facilities, particularly the PT Semen Indonesia Gresik Plant WTP, motor maintenance
is still performed after significant damage is discovered (reactive maintenance) or based on a fixed
schedule (time-based preventive maintenance). Both approaches have drawbacks. Reactive maintenance
risks detecting problems too late, while schedule-based maintenance does not always reflect the actual
operating conditions of the motor. Motor damage can build up gradually—imbalance, bearing wear,
misalignment, increased friction, or abnormal heating—and can be missed if inspections are not
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performed regularly or only occasionally [1], [4]. From an operational perspective, this mismatch creates
two common outcomes: maintenance is performed too late (after the fact) or too early (without clear
evidence), which is inefficient and can increase maintenance costs at the PT Semen Indonesia WTP.

Monitoring AC motor condition using a dashboard offers a more practical compromise. The
dashboard monitors machine condition using vibration, temperature, and rotational speed (RPM)
parameters. Data is sent in real time from various field conditions. Vibrations can reflect mechanical
disturbances, temperatures can indicate friction between the iron and the pool's bottom rocks, and
changes in RPM can reveal operational instability or AC motor drive problems [5]. Therefore, a
monitoring system that consistently captures the signals sent by these loT devices is useful, not only for
reporting field trends, but as a sign or indication of AC motor machines that are starting to fail and need
to be checked before they worsen.

The availability of low-cost Internet of Things (IoT) components has made continuous
monitoring more feasible for many plants, including those that cannot justify high-end industrial systems
for every asset. In the WTP context, [oT systems are widely reported for water-quality monitoring (e.g.,
pH, turbidity, dissolved oxygen, and temperature) and operational parameter logging [6], [7]. Several
studies also show that microcontroller-based platforms can support flexible data acquisition at relatively
low cost [3], [4]. However, a recurring limitation in many WTP-related IoT deployments is that the
system stops at monitoring. Data are displayed and archived, but predictive analysis is not always
integrated in a way that supports earlier maintenance decisions for critical mechanical assets [8].

Predictive maintenance (PdM) methods based on machine learning have shown encouraging
results in other industrial domains. Models such as Random Forest (RF) are often used as strong
baselines for multi-feature classification, while Long Short-Term Memory (LSTM) networks are
frequently selected when the data are time-dependent and patterns unfold across sequences [9], [10],
[11], [12]. Nevertheless, well-described field implementations that connect IoT-based multi-sensor
monitoring to time-series machine learning for WTP motor assets are still limited, particularly for AC
motors that operate continuously under real plant constraints (installation practicality, data quality
variation, operational fluctuations, and maintenance workflow integration) [13], [8].

Another practical issue is the scarcity of failure examples. In real operations, abnormal events
are not only undesirable but also infrequent, meaning that training data can be imbalanced and labels
can be limited. Recent work has explored the use of Generative Adversarial Networks (GANs) to
generate synthetic samples that resemble rare patterns, with the goal of improving model robustness
under data scarcity [10], [14], [15]. Although this idea is increasingly discussed in predictive
maintenance research, systematic reporting of GAN-assisted augmentation for WTP motor monitoring
remains uncommon.

This study reports an implementation-oriented evaluation of an loT-based predictive
maintenance system for monitoring an AC motor in a WTP environment. The system integrates
vibration, temperature, and RPM sensing using an embedded IoT device and a cloud-based data pipeline
for real-time acquisition and storage. Operational data were collected for 30 days from a single motor
unit in the field [ “agitator motor 1 in the chemical mixing stage”], and predictive models were evaluated
using RF and LSTM, with GAN-based augmentation used to address limited abnormal-event data. The
work focuses on three questions: (1) whether a low-cost multi-sensor IoT setup is feasible and stable in
an operating WTP, (2) whether the collected data support early indication of abnormal motor behavior,
and (3) how model performance differs between RF and LSTM under the same field dataset, including
the effect of data augmentation.

By focusing on a real deployment (rather than a purely simulated dataset), this study aims to
provide practical insight for WTP technicians and managers who want to move from periodic inspection
toward data-supported early warning. The results are presented as an initial implementation case study,
with limitations clearly acknowledged, to support future scaling across multiple motor units and longer
observation periods.

To clarify the position of this work, Table 1 summarizes related studies in IoT-enabled
monitoring and data-driven maintenance. Most published work in the water sector emphasizes water-
quality sensing and reporting, while fewer studies document field deployment for rotating equipment
where vibration—temperature—-RPM are analyzed together for early warnings.
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Table 1. comparison with other studies

Authors Challenges Methods Features
N. Mumtaz et al. - Data security- - 10T sensors-Data - Real-time monitoring-Data-
[6] Interoperability- analytics-Automated driven decision making-

S. Das et al [15]

V. K. Sandhwar
et al [7]

A. E. Alprol et
al. [14]

A. Ishtaiwi et al.
[16]

C. Anitha et al.
[17]

T.
Jomjaiekachorn
et al. [7]

H. M. Forhad et
al. [4]

T. Miller et al.
[19]

Y. K. Wang et al
[10]

Scalability-Role of
human operators

- Requires diverse
expertise-Connecting
multiple dots

- Water scarcity-
Pollution-Climate
change

- Data security-
Scalability-
Standardization

- Technological
challenges-
Socioeconomic
challenges-Policy
challenges

- Data security-
Scalability-
Standardization

- Data security-
Scalability-
Standardization

- High costs-
Technical
complexities-
Infrastructure
alterations

- Data quality-
Interoperability-
Security-Technical
constraints-Ethical
concerns

- Sensor reliability-
Data management-
System integration

systems-Al and ML

- Al algorithms-IoT-
enabled sensors

- IoT-Satellite-based
remote sensing-Big
Data analytics-Al

- loT-based
automated systems-
Cloud computing-
ML methods

- Real-time sensor
networks-ML
algorithms-
Automated irrigation
control

- [oT sensor
networks-Big Data
analytics

- [oT sensors-Edge
computing-ML
models

- Advanced sensor
technologies-Cloud-
based storage-PLC-
based control

- Al agents-IoT
devices-Predictive
modeling-Real-time
analytics

- Smart sensors-IoT
microcontroller-
Cloud database

Resource optimization-
Enhanced safety

- Predictive analysis-Risk
assessment-Timely decision-
making

- Real-time data-Predictive
insights-Proactive
management

- Real-time monitoring-Data
analytics-Automation

- Water savings-Higher water
use efficiency-Increased crop
yield

- Real-time monitoring-
Predictive analytics-Response
mechanisms

- Real-time assessment-
Predictive analysis-Data
visualization

- Real-time alerts-Historical
data logging-Remote
monitoring

- Enhanced data precision-
Cost efficiency-Scalability

- Real-time monitoring-Data
analytics-Visualization

As summarized in Table 1, the literature has widely discussed loT—Al frameworks for water
infrastructure, including security, scalability, and real-time analytics. In contrast, practical reports that
connect multi-sensor motor condition data to predictive maintenance modeling in a WTP—particularly
using time-series learning and strategies to handle limited abnormal data—are still limited. Therefore,
this work focuses on a 30-day deployment on an agitator motor and evaluates RF and LSTM models,
supported by GAN-based augmentation.

METHODS
Proposed Methodology

This study develops and evaluates an loT-based monitoring system intended for predictive
maintenance of a critical motor-driven asset in a Water Treatment Plant (WTP). The work is conducted
as a field implementation study. The overall workflow covers: (1) designing and assembling the IoT
sensing node, (2) collecting multi-sensor data from the target unit, (3) preparing the dataset through
preprocessing and feature extraction, (4) training predictive models using the collected measurements,
and (5) presenting the outputs in a dashboard so that technicians and supervisors can review trends and
warnings. The complete research flow is illustrated in Figure 1.
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Figure 1. Research Metodology

The workflow adopted here follows common practice in loT-based condition monitoring
studies, where sensor measurements are streamed, prepared, analyzed, and then summarized into
operationally readable outputs (e.g., trends and alerts) rather than being left as raw data logs [11],
[4],[20].

IoT System Design

The IoT node was installed on one agitator unit at the WTP and integrates three sensors:
vibration, temperature, and rotational speed (RPM). The vibrations were measured using an ADXL345
accelerometer sensor (16 g). This sensor was selected because it is easy to integrate with embedded
systems, has low power consumption, and is adequate for a prototype condition-monitoring setup.
Temperature was measured using a DS18B20 sensor to observe motor/bearing temperature during
operation. Rotational speed of the agitator is measured using an A3144 Hall effect sensor that detects
the rotation of the shaft with the help of a small, attached permanent magnet.

An ESP32 microcontroller was used as the main controller for sensor reading and data
transmission. Accelerometer sensors are mounted on the motor bearing housing to record dominant
vibrations with a high degree of accuracy. The temperature sensor is placed as close as possible to the
hottest point within the bearing or motor body to accurately represent thermal changes during operation.
The RPM sensor is mounted near the shaft/magnet to maintain more stable detection. The sensor module
and placement arrangement are shown in Figures 3 and 4.

Figure 4. IoT sensor placement in water treatment
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The use of ESP32 and prototype-grade sensors is intentional in this study: the goal is to evaluate
whether a relatively low-cost setup can function reliably for continuous monitoring in a WTP
environment, as suggested in other loT monitoring work in environmental and industrial contexts [21],
[4]. The study site is a WTP with fluctuating raw-water characteristics (river water and rainwater-fed
lakes), which provides realistic operational variability for testing the proposed system. The installation
location is presented in Figure 5.

< e o i
o s

Figure 5. WTP research location

Data Acquisition

Data were collected from one agitator unit at a medium-scale WTP during the observation
period. The recorded parameter were motor vibration, bearing/motor temperature, and shaft rotational
speed (RPM). Vibration was sampled at the highest rate supported by the ADXL345 hardware
configuration, up to 3.2 kHz. Accordingly, the initial “1-5 kHz” target stated during the design stage
was implemented in practice within the maximum achievable range of the sensor. This sampling rate
was selected to capture vibration components that are relevant for a medium-speed motor while still
matching the limits of the prototype hardware.

Temperature was recorded at 1 Hz. RPM was recorded at a lower rate, which is sufficient
because RPM does not typically change as rapidly as vibration. Measurements were transmitted over
Wi Fi using MQTT. Each message was packaged in JSON format and included (at minimum) a
timestamp, sensor identifier, and measurement value, so the dataset could be traced and checked
consistently during storage and analysis. This acquisition pattern is consistent with common loT
practices used in water and environmental monitoring deployments [4], [21].

Data Preprocessing and Feature Extraction

Field sensor streams are rarely perfect. In our recordings, the raw data contained measurement
noise, occasional missing samples, and sporadic spikes that could distort the learning process if used
directly. For that reason, preprocessing was applied before feature computation.

Vibration was sampled up to 3.2 kHz using the ADXL345. A fourth- order Butterworth low
pass filter with a cutoff frequency of 1000 Hz was then applied to the vibration signal to attenuate high
frequency content that is not associated with the mechanical condition targeted in this study. Missing
values were handled based on gap duration: short gaps were filled using linear interpolation, while
longer gaps were completed using simple statistical imputation based on nearby observations.

Outliers were removed using a two stage procedure. First, we performed Z score screening with
a threshold of |Z| > 3. Second, a Hampel filter with a window size of 11 samples was used to suppress
remaining spikes while preserving local trends in the signal [12]. After cleaning, features were computed
per window. Feature vectors were computed using non-overlapping 1-second windows (3200 samples
per window at 3.2 kHz). Time domain features include RMS, variance, kurtosis, and crest factor, which
summarize the overall vibration level and impulsive behavior. In addition, fixed indicators at the PT
Semen Indonesia WTP operational unit are included, such as the rate of temperature change and the
RPM movement size. This combination of pre-processing and multi-sensor features follows common
practices in sensor-based predictive maintenance studies [10], [22].
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Predictive Modeling Procedure

Researchers used two modeling approaches to test the results and differences between the two
models: Random Forest (RF) and Long Short Term Memory (LSTM). RF was used as a baseline because
it performs reliably with multivariate feature sets and provides a stable reference for normal vs. abnormal
classification. LSTM was selected because the plant measurements evolve over time; the model can
learn temporal patterns across vibration, temperature, and RPM signals.

For sequence modeling, the LSTM input consisted of sequences of length L=60 consecutive
feature windows. With 1 s non overlapping windows, each sequence represents 60 s of operation. This
design allows the model to use recent history rather than relying on a single time point. Because real
abnormal/failure events are limited in the field dataset, GAN based data augmentation was used during
training to reduce class imbalance. The GAN was trained to generate synthetic samples that resemble
rare anomaly patterns, and the generated samples were added only to the training set to improve
robustness, as suggested in data driven predictive maintenance research [11]. Figure 6 depicts the LSTM
based WGAN architecture used in this study.

To avoid data loss- the processed dataset was split chronologically: the first 70% of observations
(approximately the first 21 days) were used for training, and the remaining 30% (approximately the last
9 days) were reserved for further testing. Model performance was evaluated using accuracy, precision,
recall, and F1 score. The validation selection followed the practice of time series evaluation, where
preserving the time sequence helps prevent overly optimistic results caused by data leakage [9].
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Figure 6. Proposed LSTM Networks with GAN Augmentation

This research utilizes multi-sensor data, including temperature, vibration, and rotational speed
(RPM), which are arranged as a time series. Each sample is formed within a window of length L so that
the model receives a sequence of inputs.

Xt = [Tt + Vt + Rt] .......... (1)

For classifying motor conditions (e.g., normal and abnormal), an LSTM network is used to
process the sensor sequence and generate the final state. X; , Then, the data is mapped into class
probabilities using the specified function softmax

y =softmax(Wh; +b) ........... 2)

The LSTM parameters are optimized using cross-entropy loss so that the class predictions are
close to the actual labels. To increase the variety and amount of training data, especially when anomalous
data is limited, a WGAN-augmented GAN is used, which generates synthetic sequence data that
resembles the patterns of the original data.

Lp =E [DX)] - E[DX) + 2E(VgD(X)[l, — 1)% .......... 3)
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The synthetic data was then combined with real data to create a new dataset D4y to train the
LSTM [9], so that the model is expected to be more adaptive in recognizing anomaly patterns in WTP
operating conditions.

Visualization and Decision Support

To make monitoring results usable in day-to-day operations, the output from the analysis and
prediction phase is displayed in an interactive dashboard. The dashboard- shows time trends of key
sensor readings (vibration, temperature, and RPM), health indicators of powered-on AC motors, and
alert notifications when the system detects deviant or unusual behavior (Figure 7). The application's
dashboard allows users to easily see what's happening to the machine and track changes in condition in
real time. The dashboard is intended for two user groups. For technicians, it provides detailed time-
series plots and status information to support field inspections. For supervisors and WTP managers, it
helps summarize key indicators and alert statuses so that maintenance actions can be planned in advance,
including scheduling inspections and allocating resources based on recorded evidence [23], [8].

Our sensor research aligns with the development of other IoT applications, which utilize
intensive data recording to monitor machine condition [4], Data is managed using an automated Azure
system. We employ a single-flow (Kappa) method to ensure continuous data flow and maintain system
performance even as data volumes increase [11]. To obtain optimal results, predictive models (Random
Forest and LSTM) are applied to the collected signals [10]. Model evaluation is performed
chronologically to avoid prediction errors due to random mixing of time data [9]. and finally, the results
are presented in a Power BI dashboard so that technicians and supervisors can access the same evidence
in an easily accessible information [25], [26], [19].

WT Gresik — Daily Monitoring August 2025
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Figure 7. Power BI dashboard water treatment

Method Limitations

This study has several limitations. First, the evaluation was carried out on only one equipment
unit and over a relatively short observation period. Second, the sensing hardware used was prototype-
grade, so its measurement resolution and long-term stability may be lower than those of industrial
condition-monitoring sensors. For these reasons, the results should be read as an initial field
implementation that examines practicality and early potential of an loT-based predictive maintenance
approach in a real WTP environment, not as a full long-term reliability verification of an industrial-scale
system.

RESULTS AND DISCUSSION

Experimental Results

The experimental results show that combining vibration, temperature, and RPM measurements
through the proposed IoT setup makes it possible to observe early shifts in the operating pattern of the
monitored AC motor. Across the 30-day observation period, changes in vibration appeared earlier than
the rise in temperature and the later RPM variation, suggesting that vibration is the most sensitive
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indicator for the initial stage of mechanical degradation in this case. This observation is consistent with
commonly used vibration severity guidance (ISO 10816 standards) , where an increase in vibration level
is often one of the earliest signs of developing bearing or mechanical issues [2], [19] . In our data, the
warning range of 2.8—4.5 mm/s corresponds to the first indication of deterioration and is illustrated in
Figure 8.

AC Mator Vibration Trend Over 30 Days AC Motor Temperature Trend Over 30 Days
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Figure 8. Trends AC Electric Motor Vibration (a) & AC Electric Motor Temperature (b)

Figure 8 also shows the temperature trend of the motor during operation. The average
temperature during the monitoring period was around 72 °C, with a sharp increase reaching 95 °C on
day 21 (Figure 8b). This value falls within the warning band reported in IEEE Std 841 (80-100 °C),
which may indicate overheating related to increased load, friction, or other abnormal operating
conditions [1], [27].

To further inspect the signal behavior over time, a time—frequency analysis was conducted using
spectrograms (Figure 9). The spectrograms indicate that the augmented vibration data produced by the
WGAN preserves key characteristics of the real signal. In particular, the dominant frequency
components and their relative intensity patterns remain similar between the synthetic and observed data
after training, which supports the use of augmentation to enrich rare-pattern examples in the dataset.
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Figure 9. Spectrogram analysis for observed temperature, vibration and rotation

The developed IoT-based predictive maintenance system was deployed successfully on an AC
motor drive in the WTP. Over 30 days, the system collected approximately 837,000 sensor records,
including vibration, temperature, and RPM data points transmitted in real time. The dataset was then
processed and used to train two models—Random Forest and LSTM—and the overall performance
comparison is summarized in Table 2.

Table 2. Model Performance Comparison

Model Accuracy Precision Recall F1-Score
Random Forest 0.93 0.91 0.90 0.90
LSTM 0.95 0.94 0.92 0.93
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Both models achieved strong classification performance for separating normal and abnormal
conditions, with accuracy above 90% in the main evaluation. Random Forest reached an accuracy of
0.93 with precision 0.91, recall 0.90, and F1-score 0.90. LSTM produced consistently higher scores,
with accuracy 0.95, precision 0.94, recall 0.92, and F1-score 0.93 (Table 2). These results suggest that,
on this dataset, LSTM benefits from modeling the sequential nature of the sensor features and can better
capture how abnormal patterns develop over time.

Confusion Matrix - LSTM

Confusion Matrix - Random Forest

500
Temperature Temperature

400

300

Vibration Vibration

True Label
8
3
True Label

Rotation Speed (RPM) Ratation Speed (RPM}

Temperature Vibration Rotation Speed (RPM) Temperature Vibration Rotation Speed (RPM)
Predicted Label Predicted Label

a b
Figure 10. Model test accuracy comparison LSTM (a) & Random Forest (b)

Figure 10 provides an additional view of model behavior during testing. In the Random Forest
result shown there, the model achieved an accuracy of 0.8034, while precision (0.1093) and recall
(0.2407) were much lower. This pattern typically reflects the impact of class imbalance: abnormal events
are rare, so a model can appear “accurate” overall while still missing many abnormal cases or producing
unstable precision/recall for the minority class.

Operationally, the ability to detect defects is crucial. Missing a single defect is far more costly
than addressing multiple false alarms. Our results show that the LSTM model excels at detecting
abnormal conditions (high detection rate), as evidenced by its recall of 0.92 and accuracy of 0.95. This
advantage is beneficial for early warning systems, although it may require additional tuning to reduce
false alarms. Therefore, model selection should consider the real-world impact: which is more
detrimental, missing problems or generating too many false alarms, rather than simply pursuing statistical
accuracy alone.

Anomaly Detection Analysis Results

To detect anomalies without labeled data, researchers used the Isolation Forest and Autoencoder
methods. These techniques identify pattern deviations in combined sensor data (temperature, vibration,
and RPM). The analysis results are shown in Tables 3 and 4.

Table 3. Isolation Forest Results
No Date & Time Temperature (°C) Vibration RPM Anomaly Score

1 2025-09-14 10:40 31.94 339 60.00 -0.246616
2 2025-09-14 10:40 31.94 317 60.00 -0.245930
3 2025-09-14 10:40 32.00 291 60.00 -0.245531
4 2025-09-14 10:40 31.94 281 60.00 -0.244825
5 2025-09-14 10:40 31.94 280 2.61 -0.244825
6 2025-09-14 10:40 31.94 285 60.00 -0.244785
7 2025-09-14 10:40 31.94 130 60.00 -0.242875
8 2025-09-14 10:40 31.94 265 60.00 -0.242625
9 2025-09-14 10:40 31.94 265 60.00 -0.242625
10 2025-09-14 10:40 31.94 271 60.00 -0.241153

Table 3 lists ten extreme anomalies reported by Isolation Forest model. The highlighted points
were gathered at one time only (September 14, 2025 at 10:40), so it is not random noise, but rather a
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brief disturbance that occurred at that time. The anomaly was primarily caused by unusually high
vibration readings (many values above 300) while the RPM remained near 60. One record shows a
sudden drop in RPM to 2.61, which is inconsistent with the surrounding points and may indicate a brief
operational interruption or measurement/sensor issue. The temperature values remained relatively stable
at the same time, indicating that the anomaly pattern was dominated by the vibration-RPM combination
rather than a thermal event in the AC motor at the WTP.

The table analysis indicates that Isolation Forest can capture these brief, anomalous moments—
those that are often easily missed when looking at long time-series logs. In maintenance practice, these
signs could indicate a momentary mechanical disturbance (e.g., slight misalignment, looseness), but
could also be due to a sensor issue. In essence, the model will flag those points as “unusual” because the
combined pattern of all variables looks aberrant, not just because one variable crosses a fixed threshold.

Table 4. Most extreme anomalies for the autoencoder method
Date & Time Temperature (°C) Vibration rpm recon_error

2025-09-11 18:54 58.0 224 391 33.918
2025-09-14 06:17 58.0 316 328 23.822
2025-09-15 03:54 58.0 255 304 20.481
2025-09-14 10:40 31.94 0 60 944
2025-09-14 10:40 31.94 10 60 943

Autoencoder data: Table 4 shows the most extreme data according to the calculation results.
Compared to Isolation Forest, the autoencoder flags "anomalous" data because the combined pattern of
values is not as predictable as normal conditions. The most severe case occurred on September 14, 2025,
at 10:40 AM: where the temperature was 31.94, vibration was zero (or nearly zero), and the RPM was
60, with a recon error of 944. This is highly suspicious because it is likely due to a sensor problem (e.g.,
a loose sensor, a saturated signal, or a data drop), rather than the AC motor itself.

Of the 802,390 training data points obtained at WTP, approximately 5% (40,119 points) were
detected as anomalies based on the reconstruction error threshold. Most anomalies occur when the
combination of values is unusual—for example, extremely high temperature, abnormal RPM, or
extreme/suddenly zero vibration. Because it does not require a fault label, the autoencoder is suitable
for simple fault cases and can capture fairly complex patterns.

Table 5. Comparison of Isolation Forest vs. Autoencoder on WTP
Model AUCPR False Alarm Rate
Isolation Forest High (stable) Lower
Autoencoder More sensitive  Slightly higher

Table 5 summarizes the differences in anomaly detection model used in this study. Both model
can be used, but they emphasize different considerations. Isolation Forest tends to be simpler and
computationally lighter, and can provide stable anomaly flags suitable for rapid filtering in near-real-
time applications. Autoencoders are more sensitive to complex and rare variable combinations, which
can be beneficial for more in-depth analysis of WTP conditions.

Therefore, the choice of model should depend on the monitoring objectives. If the priority is
fast detection with low computational overhead for routine operational monitoring, Isolation Forest is a
practical choice. If the priority is capturing more subtle or non-linear anomaly patterns for research
analysis or for a more sensitive early warning layer, autoencoders are more attractive. Based on the
results of this study, Isolation Forest is more recommended for implementation in the PT Semen
Indonesia WTP IoT.

Discussion of Results

The implementation of the model at PT Semen Indonesia's WTP (Water Treatment Plant)
demonstrated that the system can provide notification if the AC motor is in an abnormal condition. Three
important factors influence this:
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First, vibration typically increases before other indicators. During monitoring, the increase in
vibration was observed before the temperature spiked and before the RPM dropped. This makes sense
because early signs of mechanical problems—especially bearing-related—often arise from vibration.

Second, the IoT flow (sensor—send data—storage—dashboard) supports WTP operations.
Operators no longer need to wait for periodic checks; they can simply observe trends and warning
signs or notifications to determine when manual inspections are necessary. This allows maintenance to
be performed sooner, rather than after damage has occurred.

Third, the temperature rose to 95°C during higher pump loads. This indicates that temperature
is related to operating load. This finding aligns with Arivalagan and Srinivasan [28], who explain that
temperature and other operational conditions are more accurate indicators of machine failure. Findings
at the WTP indicate that frequent overheating can accelerate insulation aging and increase the risk of
machine failure.

Significance Findings

This work provides two main contributions at the implementation level.

Feasibility of a low-cost field deployment. The study demonstrates that an ESP32-based multi-sensor
node (vibration, temperature, and RPM) can be installed and operated in a WTP environment and can
produce a usable dataset for analysis and monitoring. This is a practical result: it shows that continuous
data collection for motor condition monitoring is achievable without relying on high-end industrial
monitoring systems.

Value of multi-sensor monitoring for early warning. Using vibration, temperature, and RPM together
provides a more complete picture than relying on one signal only. In the dataset, abnormal patterns were
clearer when the variables were interpreted jointly, which is consistent with existing literature on
condition monitoring and predictive maintenance [26].

Regarding the operational benefit claim (e.g., reduced unplanned downtime), the result in this study
should be treated as a potential outcome rather than a verified impact. The study did not include a long-
term controlled comparison or formal statistical evaluation of downtime reduction. Therefore, the
statement about up to 25% reduction is best framed as a target/KPI reference or an indicative
expectation, not as a proven quantified benefit. The main value of the present work is that it establishes
a working prototype and a field dataset that can support a stronger evaluation in future trials.

CONCLUSION

This study investigated an [oT-based predictive maintenance system for monitoring AC motors.
Data was collected over 30 days from a single motor. During the monitoring, significant changes were
observed: vibration reached 3.9 mm/s, temperature rose to 95°C, and rotation dropped to around 1420
RPM. These analysis results are outside the normal range and can therefore be considered warning signs
of impending failure. However, this does not necessarily indicate actual motor failure—rather, the data
indicates unusual behavior that requires further investigation in the field.

Several methods were tested on this multi-sensor data: Random Forest and LSTM (supervised
models), and Isolation Forest and autoencoder (unsupervised models). All were able to identify unusual
patterns, but each model had a different alarming style—some were more sensitive, others more stable.
While some metrics improved, the study did not use statistical tests to confirm the differences were truly
significant. Therefore, the results are best read as an initial evaluation in a case study, rather than a test
of whether one method is superior.

Combining vibration, temperature, and RPM sensor data has proven more useful than using a
single parameter. This system has the potential to be an early warning tool at PT Semen Indonesia's
WTP to support maintenance decisions. However, claims such as cost savings, reduced downtime, or
increased reliability are uncertain because it has not been tested long-term.

The study's limitations are clear: this study only monitored one AC motor for a relatively short
period of time, the sensors used at the WTP are still prototypes, and more detailed diagnostic analysis
(e.g., vibration frequency analysis for specific types of damage) has not been fully discussed.
Operational aspects such as alarm response standard operating procedures (SOPs), technician training,
integration into maintenance workflows, and cost analysis have not been addressed.

In the future, the study should be expanded to a longer period and include more sensors installed
on more AC motors, with more robust statistical evaluation. Furthermore, the study could include
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frequency analysis, RUL estimation, and edge computing options. From an operational perspective,
alarm handling regulations are needed to prevent false alarm notifications, as well as integration into the
maintenance management system for daily use at PT Semen Indonesia's WTP.
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