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Accurate road damage detection is vital for ensuring road safety and
supporting timely infrastructure maintenance. However, the question
remains open as to which YOLO variant offers the best trade-off
between accuracy and efficiency for road damage detection under
Indonesian conditions when models are trained on a mixed
international-local dataset. This study evaluates and compares the
performance of four YOLO models: YOLOvV5-S, YOLOvV5-M,
YOLOvVS-S, and YOLOvV8-M, for detecting road damage types,
including Alligator Cracks, Longitudinal Cracks, Transverse Cracks,
Potholes, and Lateral Cracks. The models are trained on a combined
dataset from GRDDC 2020 and the Ministry of Public Works and
Housing (PUPR) of the Republic of Indonesia, addressing challenges
such as class imbalance and diverse road and lighting conditions.
Results show that YOLOvV8-M achieves the highest mAP@0.5 (0.435),
with strong precision and recall for prominent damage types, making it
the most reliable option for high-accuracy applications. The YOLOVS-
M is generally well-balanced in terms of precision and recall, while the
YOLOvVS-S focuses more on the concept of recall, thus being
appropriate in situations where more cases of the damaged type need to
be detected. It is also noted that all models still have problems with less
significant kinds of road damage, especially Lateral Cracks, which has
a likelihood of being identified under the Background category. Through
comparison, it was determined that YOLOv8-M has the highest
accuracy among the models using the mixed GRDDC-PUPR scheme,
aside from still having improvements in the minority categories.

This is an open access article under the CC-BY-SA license.

INTRODUCTION

Indonesia has registered major growth in the mileage coverage of roads over the past two decades,

making the need for monitoring the conditions necessary for timely maintenance more pressing.

Statistics Indonesia (BPS) data show a total mileage coverage increased by 18.73%, from 542,160 km
in 2019 to 550,735 km in 2023 [1]. Even with the growth, the task of maintaining the relevant
infrastructure has become difficult, given that the condition of the roads can result in reduced

transportation safety and efficiency.

Road transport is the main mode used in goods distribution in Indonesia, with road conditions

playing an important role in economic performance. Bad road conditions accelerate the chances of traffic
accidents, logistics processing, and economic loss [2]. In 2022, BPS documented traffic accidents
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amounting to 139,258 cases with estimated economic loss around IDR 280 billion [3]. Moreover, poor
road conditions and inadequate road construction quality performance had been associated with the
deterioration of road longevity due to decreased performance quality [4], [5]. This highlights the
significance associated with accurate and appropriate scaled performance in road condition assessment.

Traditional manual road surveying practices, remaining common in Indonesia until now, also
have limitations in terms of scalability, impartialness, and objectiveness. Moreover, the findings of the
survey may also differ from surveyor to surveyor and are dependent on the available time and labor. On
the other hand, the use of computer vision-based Al for the automation process of road damage detection
can help address the maintenance issue through faster and more impartial evaluation for model selection
for the automation process to be implemented in the Indonesian setting. Therefore, a common
framework for the comparison of the YOLO models is crucial for the identification of the most suitable
models for a balance between detection precision and real-time applicability in the Indonesian context.

In real-time object detection models, the You Only Look Once (YOLO) series of models have
gained popularity across the board owing to their overall efficiency and processing speed in equal
measure [6]. Competitive efficiency of YOLO series-based models in road damage recognition tasks
across multiple nations and sets of research datasets had been identified in past studies [7]. However,
their efficiency can be affected in domain-specific scenarios in terms of variations in light conditions,
road texture, and complex road crack patterns, among others, typical of tropical road scenarios. YOLO
series models, specifically YOLOVS, had shown efficient performance in multiple road damage
recognition tasks but could potentially struggle in very harsh lighting conditions with complex road
patterns such as alligator-cracked roads [8], [9]. Recent models like YOLOvVS showed architectural
improvements for enhanced efficiency in road damage recognition tasks [10], [11].

Although research on road damage detection using YOLO-based approaches has emerged, there
is a lack of empirical evidence comparing YOLOvVS and YOLOvV8 within a common training and testing
scheme, particularly for Indonesian roads. Therefore, this paper aims to provide a systematic comparison
of YOLOVS and YOLOvVS on a mixed GRDDC—PUPR dataset under Indonesian tropical road conditions.
Specifically, we compare YOLOVS5-S, YOLOvS5-M, YOLOvS-S, and YOLOV8-M trained and evaluated
on a combined dataset that integrates international data from GRDDC 2020 [12] and local road-damage
images provided by the Indonesian Ministry of Public Works and Public Housing (PUPR). The main
objective is to identify which of these models offers the most favorable balance between detection
accuracy and inference speed for road-damage detection in Indonesia. The contributions presented in
this research are threefold. First, this research is interested in exploring the impact of training and testing
YOLOVS and YOLOvVS models on a hybrid GRDDC-PUPR dataset which is a more realistic
representation for Indonesia. Second, this research is interested in providing benchmark results for
comparison on standard evaluation metrics for detection such as mAP at 0.5, precision, recall, and F1
score. Third, this research offers insights into some challenges for future development for creating
Indonesia-specific Al-assisted road maintenance systems using machine learning models.

METHODS

Flowchart

This paper uses a structured approach in evaluating and comparing four different YOLO models,
namely YOLOv5-S, YOLOv5-M, YOLOvVS-S, and YOLOv8-M [13] on the task of road damage
detection in Indonesia. From Figure 1, it is observed that the analysis began with an Exploratory Data
Analysis phase involving GRDDC 2020 and Indonesian PUPR. This phase helped in analyzing the
distribution of road damage issues in the GRDDC 2020 and Indonesian PUPR dataset.
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Figure 1. Research Flowchart

The dataset was then split into a train, validation, and test set using a Holdout method with an
8:1:1 split [14]. This was followed by data augmentation, but only on the train set. The hyperparameters
were then tuned using the validation set.

All the YOLO models were then trained on the train set, and the selection process was performed
on the validation set using Precision, Recall, and mAP [15]. Finally, the best models were evaluated on
the test set, thus the unseen set constituted 10% of the entire task. The results are then plotted using
Precision—Recall curves and F1 Confidence Analysis at different confidence thresholds. In this manner,
the analysis is repeatable and allows for a fair comparison of the models.

Experiment Design

For evaluation, the current research will choose YOLOvV5 and YOLOVS, given the efficiency
demonstrated by the models in real-time object detection, according to Sami et al. [16]. YOLOVS is
widely used as a reliable baseline model that offers a trade-off between speed and accuracy, while
YOLOVS is more advanced with architecture improvements to optimize computational cost for practical
uses [11].

In Figure 2 below, the basic components universally found in both models are described. The
YOLOVS benefits from features extraction defined by the application of CSPDarknet with
BottleneckCSP and SPP, a PANet for multi-resolution features fusion, and the YOLOVS detection head
[17].
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Figure 2. YOLOVS and YOLOVS architectures (backbone—neck—head), reproduced/adapted from Ultralytics
resources [29], [18].

In YOLOVS, the features are potentially improved with the adoption of C2f features in the
backbone and neck, coupled with the application of a detection head [18].

For each model, an equal training protocol and data augmentation process was used on the training
split (random cropping, rotation, and color jitter). Handling the problem of imbalance between the
classes was considered in the training process through sampling and/or weighting of the classes. Model
evaluation was performed on the validation split, while the final results are expressed on the test split
(unseen) for each model. The protocols considered are helpful in comparing the YOLOvS and YOLOVS
models in the Indonesian road setting.

Evaluation Metrics

In the bid to ensure the reproducibility of the evaluation for every version of the YOLO, the
performance of the model is tested through the metrics of loU, precision, recall, F1 score, and the
average precision. This is because the above-mentioned parameters are commonly used in the object
detection tasks.

Intersection over Union (IoU). IoU measures the overlap between a predicted bounding box
Bpand the corresponding ground-truth box By, and is defined as:

_ |BpNBg|
|Bp U Bge|

IoU (1

A prediction is considered a true positive when its loU with the matched ground-truth box exceeds
a predefined threshold and the predicted class is correct; otherwise, it contributes to false positives or
false negatives depending on matching outcomes.

Precision, Recall, and F1-score. Based on the counts of true positives (TP), false positives (FP),
and false negatives (FN), precision and recall are computed as:
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TP TP
, Recall = :
P+FP TP+FN

Precision = - 2
The F1-score provides a single measure that balances precision and recall, which is particularly
informative under class imbalance:

2:Precision-Recall
F1 = £TEcsomrecd (3)

Precision-Recall
Average Precision (AP) and mean Average Precision (mAP). For each class, the Precision—
Recall (PR) curve is obtained by sweeping the confidence threshold over the detector outputs and

computing precision and recall at each operating point. The Average Precision (AP) for a class is defined
as the area under its PR curve:

AP = f01 Precision(Recall) dRecall. (4)

The mean Average Precision (mAP) is then computed by averaging AP values across all evaluated
classes:

mAP = L ¥K_ AP, (5)

where Kdenotes the number of classes.

Following common object-detection practice, we report mAP@0.5, which uses an IoU threshold
of 0.5, and mAP@0.5:0.95, which averages AP over multiple loU thresholds from 0.50 to 0.95 with a
step of 0.05 (COCO-style evaluation). In addition, we report PR curves to visualize model behavior
under varying confidence thresholds, and we analyze F1—confidence curves to identify the confidence
level that yields the best balance between precision and recall for each model.

The definitions of IoU, precision, recall, F1-score, AP, and mAP used in this study follow
standard formulations commonly adopted in deep learning—based object detection benchmarks and prior
work [30].

Dataset

On account of the analogous circumstances in Indonesia and Indian cases relating to roads, this
research combines the GRDDC 2020 dataset with the Indonesian PUPR dataset. The GRDDC 2020
dataset is a set of 25, 336 labeled pictures from both Japan and India. On the contrary, the PUPR dataset
consists of anonymized pictures of damaged roads in different Indonesian provinces [19], [20]. These
PUPR pictures have been collected with permission from the relevant institution, and the timeframe
collected was similar in both cases. There are several factors that affect the pattern of damage, including
overuse, drainage issues, and rainfall.

After filtering, harmonizing, and implementing quality control, the end result is the fusion of a
dataset of 15,581 images gathered from both the GRDDC and the PUPR data sources. Images with
inconsistent labels, heavily corrupted images, and images lacking labels were removed from the final
dataset. The dataset of 15,581 images comprises images from the GRDDC-2020 source: 11,123 images,
and the PUPR source: 4,458 images.

To ensure label consistency across all datasets, a label harmonization process was applied.
Damage categories from the GRDDC and PUPR datasets were mapped into a unified taxonomy
consisting of eight road damage classes. Semantically equivalent labels were merged, while classes that
had no corresponding instances after harmonization were excluded from further analysis. Of the eight
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retained classes, three classes contain no instances in the final dataset. In practice, the model was defined
with eight labels, but training was effectively performed on five labels with non-zero instances.

Exploratory Data Analysis and Preprocessing

The combined dataset includes 15,581 images and is split 8:1:1 into training (12,453), validation
(1,571), and testing (1,557) sets [21]. The split was performed at the image level using stratified random
sampling to preserve the class distribution across splits, with a fixed random seed for reproducibility.
Although the unified taxonomy defines eight damage categories, only five classes contain non-zero
instances in the final combined dataset: Alligator Crack, Longitudinal Crack, Transverse Crack, Pothole,
and Lateral Crack. Figure 3 summarizes the distribution of annotated instances for these five active
classes in the combined GRDDC-PUPR training set.
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Figure 3. Class distribution of annotated road-damage instances in the combined GRDDC—PUPR training set.

As shown in Figure 3, the biggest group of cracks in the dataset is that of the pothole type, with
more than 12,000 examples, followed by longitudinal and alligator cracks with around 9,000 examples
for each type. Lateral and transverse cracks are under-represented. The distribution of the cracks is not
equally proportioned. This is consistent with previous studies employing GRDDC, in which the
normalization exhibited a significantly greater proportion of the population for the pothole type
compared with the other [22], [23]. The above-mentioned uneven distribution may affect the training
and test of the classifiers. To prevent the majority-class bias, several techniques for addressing the
imbalance were employed during training. These include class-aware oversampling of the minority
classes and class-weighted loss [24], [25].

RESULT AND DISCUSSION
Training and Validation Result

YOLOVS-S

YOLOVS5-S was trained for 10 epochs on the RTX 4060 Ti card with 16 GB of VRAM at a batch
size of 8. During both the train and validation phases, there was an evident reduction in all major loss
components, including box loss, loss on the classification, and Distribution Focal Loss. This pointed
towards the convergence of the entire learning process during the train phase (Figure 4). There were no
major oscillations in both the train and validation loss curves.
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(a) Yolov5-S training result

Figure 4. Training and validation curves on the hybrid GRDDC-PUPR dataset for YOLOv5-S

On the quantitative side, YOLOvV5-S displayed the strongest improvement regarding the metric
of recall, with this metric increasing from an initial training value of 0.135 to 0.426 after the first 10
epochs, while precision reached 0.466 and mAP@0.5 0.404 (Table 1). The overall mAP scores of all
variants also elevated from somewhat low values initially to relatively higher, although modest, values.
These trends support the hypothesis that YOLOvVS-S prioritizes recall compared with the larger YOLOv5-M model.

Suitability/Interpretation: YOLOVS-S is suitable for applications requiring a maximal coverage
of detections (e.g., initial screening or safety inspection applications, where a missed detection has an
expensive consequence). The training process indicates a reliable enhancement of recall with a small
number of training iterations.

YOLOvV5-M

In YOLOVS5-M, the same set of experiment parameters were used (10 epochs, RTX 4060 Ti, batch
size of 8), and there were also declines in both train and validation loss values, reflecting healthy learning
behavior (Figure 5). There was a smooth convergence of loss terms, and progress was also seen in
validation metrics.
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Figure 5. Training and validation curves on the hybrid GRDDC-PUPR dataset for YOLOv5-M

Quantitatively, YOLOv5-M increased recall from 0.110 to 0.421 over the 10 epochs, and achieved
a validation precision of 0.488 with mAP@0.5 0.415. These improvements in recall, precision, and mAP
(Table 1) indicate that YOLOVS-M attains a favorable trade-off between sensitivity and false positives
compared with the smaller YOLOvS5-S model.

Interpretation / suitability: YOLOvVS5-M provides a balanced option when both detection coverage
and acceptable false positive rates are required. It is a good candidate for deployments that require
moderate inference speed with improved detection robustness over the smallest variant.

YOLOVS-S

During training of the YOLOVS-S, which was done under the same hardware and
hyperparameters as in other experiments, there was a steady drop in the loss components, as well as
improvements in the validation metrics (Figure 6). The training curves show that there were no sudden
divergence issues in the optimization of the model.
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Figure 6. Training and validation curves on the hybrid GRDDC—-PUPR dataset for YOLOv8-S

After 10 epochs, YOLOV8-S reached a validation precision of 0.494, recall of 0.437, and mAP@0.5 of
0.430 (Table 1), with all loss components decreasing steadily (Figure 6). The combination of higher precision
and substantial mAP gains indicates that YOLOvVS8-S reduces false positives compared with the
YOLOVS variants, while simultaneously improving overall detection accuracy.

Interpretation/suitability: This variant will be more suited to situations where precision is of key
importance and false positives incur significant costs. Based on its behavior, it seems to be acting
conservatively and accurately within its budget of epochs.

YOLOvV8-M

YOLOV8-M also demonstrated stable convergence of training and validation losses across the 10
epochs on the RTX 4060 Ti (Figure 7-model panel for YOLOv8-M). Loss reductions were smooth, and
validation metrics trended upward with epoch number, indicating effective optimization under the
selected settings.
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(d) Yolov8-M training result
Figure 7. Training and validation curves on the hybrid GRDDC-PUPR dataset for YOLOvS-M

YOLOVS-M achieved the highest validation precision among all models (0.536), with a recall of 0.438,
mAP@0.5 of 0.435, and mAP@0.5:0.95 of 0.191 (Table 1). The corresponding training and validation curves in
Figure 7 show smooth loss reduction and monotonic improvements in the metric. The combination of high
precision with modest mAP gains suggests YOLOv8-M produces fewer false positives while offering
incremental improvements in overall detection accuracy.

Interpretation / suitability: YOLOvV8-M is most suitable for applications that prioritize precision
and low false positive rates (for example, automated decision systems where false alarms are costly). Its
behavior suggests conservative but reliable detection performance within the given epoch budget.

Table 1. Comparison of Training and Validation Metrics for YOLOv5 and YOLOvS Models

Metric YOLOvV5-S YOLOVS5-M YOLOVS-S YOLOvV8-M
Recall 0.426 0.421 0.437 0.438
Precision 0.466 0.488 0.494 0.536
mAP@50 0.404 0.415 0.430 0.435
mAP@50-95 0.176 0.182 0.186 0.191

Precision-Recall

For better assessment of classification performance with varying levels of imbalance between the
classes, we proceeded to calculate the Precision-Recall (PR) curves for all models. Although metrics
such as accuracy and/or ROC curves are commonly used for comparing model performance, they are
less insightful compared to PR curves, which are especially useful with less frequent classes [25], [26].

Figure 8 below illustrates the PR curves of all four models: YOLOvVS-S, YOLOv5-M, YOLOVS-
S, and YOLOv8-M, while Table 2 below provides their mean average precision at loU > 0.5 (mAP@0.5)
for all five damage classes.
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Table 2. Per-class Average Precision (AP@0.5) on the Test Set for Each YOLO Variant

Class YOLOVS-S YOLOvV5-M YOLOV8-S YOLOv8-M
Alligator Cracks 0.403 0.377 0.649 0.643
Transverse Cracks 0.403 0.377 0.396 0.414
Longitudinal Cracks 0.403 0.377 0.402 0.422
Potholes 0.377 0.373 0.390 0.403
Lateral Cracks 0.158 0.169 0.181 0.180

Across models, YOLOv8-M achieved the highest overall mAP@0.5 on the test set (0.435),
followed by YOLOV8-S (0.430), YOLOV5-M (0.415), and YOLOVS5-S (0.404) (Table 4). At the class
level (Table 2), YOLOV8 variants performed exceptionally well on Alligator Cracks, with AP@0.5
scores of 0.649 (YOLOVS-S) and 0.643 (YOLOv8-M). In contrast, all models struggled with Lateral
Cracks, which yielded the lowest AP@0.5 values (0.158—0.181). In contrast, all models struggled with
Lateral Cracks, which yielded the lowest AP@0.5 values (0.158-0.181). Visually, the PR curves for
YOLOVS8 variants appear smoother across confidence thresholds, suggesting a more stable precision—
recall trade-off.

F1-Confidence Curve

Apart from analyzing the precision-recall curves, we also analyzed the F1 vs. confidence curve
to find the confidence threshold that yields the best trade-off between precision and recall. Table 3 shows
the peak F1 scores attained by each of the YOLO models along with the corresponding confidence
threshold values on the test data.

Table 3. Peak Fl-score and Corresponding Confidence Threshold on the Test Set
Model Peak F1-Score Confidence threshold at peak F1
YOLOvS-S 0.43 0.210

Best-performing class at peak

Longitudinal Crack
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YOLOv5-M 0.43 0.188 Transverse Crack
YOLOvVS-S 0.44 0.182 Alligator Crack
YOLOvS-M 0.45 0.208 Alligator Crack

The table reveals that YOLOvS8-M yields the highest peak F1 score of 0.45 with a confidence
threshold of 0.208, while YOLOVS-S yields a peak F1 score of 0.44 with a confidence threshold of
0.182. For the YOLOvVS5 models, the peak F1 scores attained are 0.43, which occur at confidence
thresholds of 0.210 for YOLOVS5-S and 0.188 for YOLOv5-M, respectively. Figure 9 depicts the F1 vs.
confidence curves of all models, which show the F1 scores attained by each of the models for each
damage type at different confidence thresholds.

10 F1-Confidence Curve 10 F1-Confidence Curve

0.8 0.8

Confidence

Confidence

—— Longitudinal Crack —— Longitudinal Crack

—— Transverse Crack —— Transverse Crack

—— Alligator Crack —— Alligator Crack

—— Potholes —— Potholes

—— Lateral Crack —— Lateral Crack

= all classes 0.43 at 0.210 = all classes 0.43 at 0.188
(a) YOLOV5-S (b) YOLOvV5-M

Yuniar, I et al. ( A Performance Comparison of YOLOvS and YOLOvVS for Road Damage Object Detection ....)



Elinvo (Electronics, Informatics, and Vocational Education), 10(2), November 2025 - 159
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

F1-Confidence Curve

1.0

0.8

1.0

Confidence

—— Longitudinal Crack

—— Transverse Crack

—— Alligator Crack

—— Potholes

—— Lateral Crack

= 3|l classes 0.44 at 0.182

1.0

F1-Confidence Curve

0.8

0.0

Uh Oh dﬁ ds 1.0

Confidence

—— Longitudinal Crack

—— Transverse Crack

—— Alligator Crack

—— Potholes

—— Lateral Crack

3|l classes 0.45 at 0.208

(©) YOLOVS-S

(d YOLOV8-M

Figure 9. The F1-Confidence Curve for Each YOLO Variant

Performance Comparison Across YOLO Variants

This analysis evaluates and compares the performance of four different YOLO variants, namely
YOLOVS-S, YOLOvS5-M, YOLOvVS-S, and YOLOVS-M, for road damage detection tasks. The
performance analysis is carried out using four main performance measures, including precision, recall,
mean Average Precision at loU 0.5 (mAP@0.5), and mean Average Precision from IoU 0.5 to 0.95

(mAP@0.5:0.95) as shown in Table 4.

Table 4. Performance Comparison of YOLO Variants

Model Precision Recall mAP@0.5 mAP@0.5:0.95
YOLOVS-S 0.466 0.426 0.404 0.176
YOLOvV5-M 0.488 0.421 0.415 0.182
YOLOVS-S 0.494 0.437 0.430 0.186
YOLOvVS-M 0.536 0.438 0.435 0.191

As shown in Table 4, the YOLOVS variants consistently outperformed the YOLOvVS counterparts
across all metrics. Notably, YOLOv8-M achieved the highest detection performance with a precision of
0.536, recall of 0.438, an mAP@0.5 of 0.435, and an mAP@0.5:0.95 of 0.191. This was closely
followed by YOLOvS8-S, which achieved an mAP@0.5 of 0.430 and mAP@0.5:0.95 of 0.186. In
comparison, YOLOvV5-M and YOLOvVS-S obtained slightly lower results, with mAP@0.5 scores of

0.415 and 0.404, respectively.

Table 5. Per-class Precision on the Test Set

Class YOLOVS5-S YOLOvV5-M YOLOV8-S YOLOv8-M
Longitudinal Crack 0.458 0.473 0.447 0.483
Transverse Crack 0.435 0.455 0.428 0.446
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Class YOLOvVS-S YOLOvV5-M YOLOvVS-S YOLOvV8-M
Alligator Crack 0.554 0.535 0.536 0.563
Potholes 0.472 0.463 0.457 0.488
Lateral Crack 0.366 0.383 0.430 0.410

Table 6. Per-class Recall on the Test Set

Class YOLOVS5-S YOLOv5-M YOLOV8-S YOLOvV8-M
Longitudinal Crack 0.413 0.399 0.433 0.432
Transverse Crack 0.469 0.515 0.487 0.512
Alligator Crack 0.620 0.625 0.671 0.635
Potholes 0.380 0.399 0.414 0.396
Lateral Crack 0.175 0.181 0.193 0.199

Figure 10 also indicates the results in the form of normalized confusion tables for the discovery
of patterns of misclassification for the four versions of YOLO, highlighting the variation in performance
for low-contrast damage classes like longitudinal and transverse cracks.

Confusion Matrix Normalized

Longitudinal Crack - 038 0.01 0.01 0.23 0.8

Transverse Crack - 0.01 . 0.14 0.7

Alligator Crack -  0.02 058 0.01 0.32 0.6
Potholes - 0.01 0.34 0.03 0.29

0.5

White Line Blur -

Predicted

0.4

Cross Walk Blur -
-03

Manhole Cover -
-0.2

Lateral Crack - 0.02
-01
e

-0.0

Transverse Crack
Alligator Crack
Potholes
White Line Blur -
Cross Walk Blur -
Manhole Cover -
Lateral Crack - =
background -

Longitudinal Crack

=
j=
[}

(a) Conf matrix YOLOV5-S

Yuniar, I et al. ( A Performance Comparison of YOLOvS and YOLOvVS for Road Damage Object Detection ....)



Elinvo (Electronics, Informatics, and Vocational Education), 10(2), November 2025 - 161
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Confusion Matrix Normalized

Longitudinal Crack -  0.34 0.01 0.01 0.01 0.20 0.8
Transverse Crack - 001 014 0.7
Alligator Crack - 0.02 0.01 031 0.6
Potholes - 001 0.01 035 0.04 033
0.5
o
j
t N
% White Line Blur -
o 0.4
[
Cross Walk Blur -
-0.3
Manhole Cover -
-0.2
Lateral Crack - 0.10 0.01
-0.1
background
' ' ' l -0.0
X 3 3 w = = = 3 o
] ] ] ] 3 El o ]
el © o s @ @ 2 I3 5
o [w} s} £ @ ~ o g I
© [ S = a @ = o
g 8 3 £ 3 2 3 g g
k] > > = 2 £ § 3
= a = = o a
@ S < 3 S =
5 =
3
True
(b) Conf matrix YOLOV5-M
Confusion Matrix Normalized
Longitudinal Crack 0.01 0.01 0.01 0.01 0.26 0.8
Transverse Crack - 001 0.44 0.14 0.7
Alligator Crack - 003 0.01 0.01 0.29 0.6
- o001 0.04 0.30
Potholes 0.5
-
@
b . .
=2 White Line Blur -
k=1
@ 0.4
&
Cross Walk Blur -
-03
Manhole Cover -
-0.2
Lateral Crack - 0.11 0.01
-0.1
background 0.84
' ' " I =0.0
~ ¢ ~ @ = - - v .
=} U ] kil 3 3 @ =]
g u g ° @ @ 3 g 5
=] s} ] 5 o ~ o] o g
—- w = c &l @ - o
E ¢ 8 £ 3 g 2 g g
e g 5 ] P £ 3 2
2 o = = 8 ] 8
o ] < = o =
5 =
2
True

(c) Conf matrix YOLOVS-S

Yuniar, 1. et al. (A Performance Comparison of YOLOvS and YOLOVS for Road Damage Object Detection ....)




Elinvo (Electronics, Informatics, and Vocational Education), 10(2), November 2025 - 162
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)

Confusion Matrix Normalized

0.8
Longitudinal Crack n 001 0.01 0.01 023

Transverse Crack - 001 048 0.16 0.7
Alligator Crack -  0.03 0.01 0.31 0.6
Potholes - 0.01 0.37 0.04 029 0.5
o
@
S white Line Blur -
2 0.4
4
a
Cross Walk Blur -
-03
Manhole Cover -
-0.2
Lateral Crack - 0.14 0.01
-0.1
e
' ' ' ' -0.0
a2 2 & " [ [ . ™) o
[~ [ [ =3 =] ' =3
& 8 g s @ a 3 ] 5
o (] (&) s @ X o Q o
o @ 13 L= o @ w o
2 g g £ 3 S 3 g 2
3 H 2 £ b <€ 5 B
= a = £ <] o —
o H < = Is} =
5 =
3
True

(d) Conf matrix YOLOV8-M

Figure 10 (a) YOLOVS-S, (b) YOLOV5-M, (c) YOLOVS8-S, and (d) YOLOv8-M. Particularly for subtle damage
types, such as longitudinal and Transverse Cracks, which are frequently misidentified as background, darker
colors suggest a higher frequency of misclassification.

To offer qualitative observations of model performance, Figure 11 shows the ground truth
annotation alongside the YOLOVS5-S and YOLOvVS8-M predictions
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Figure 11. Visual comparison of the experimental results for road damage detection: (a) Ground truth annotation,
(b) YOLOVS-S predictions, and (¢) YOLOvVS-M predictions. YOLOv8-M shows higher confidence and less false
positives, especially in the longitudinal and alligator crack samples.

Discussion

Interpretation of overall trends and deployment-oriented implications

As given in Table 1, YOLOVS-S prioritizes Recall, making it suitable for applications where
achieving maximum detection is a priority. YOLOv8-M has been found to offer maximum precision
and is suitable for applications where low false positive values are required. YOLOvV5-M and YOLOVS-
]
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S offer balanced solutions for trade-offs based on which they should be utilized for achieving maximum
speed, accuracy, and precision.

YOLOV8-M has been found to offer maximum precision for almost all types of damage,
especially for Alligator Cracks and Potholes. In comparison, YOLOvVS5-S still holds relevance for
applications with consistent detection within specific classes, especially Transverse Cracks. To improve
detectability within all classes, there is still a need for optimal optimization, especially for those classes
with low performance, including Lateral Cracks.

The YOLOvV8 model has shown significant improvement in road damage detection with increased
precision and location accuracy and has been found to be competitive in retaining similar levels of Recall.
The negligible levels of performance variation among YOLOv8-M and YOLOVS-S imply trade-offs in
simplicity and speed.

YOLOV8-M is found to be more accurate than YOLOvVS-S but with increased computational
complexity. In comparison, YOLOvVS5-S promotes increased inference speed and is deemed suitable for
applications with real-time inputs. These results imply trade-offs among computational complexity,
accuracy, and speed for different variants of YOLO models.

F1-confidence interpretation and threshold behavior

This analysis aims to evaluate the F1-Confidence Curve in an attempt to establish the efficacy
capabilities of a variety of confidence levels. The F1-score is an appropriate measure of efficacy in cases
involving two-class imbalance issues relevant in the application of this research. A trade-off between
precision and recall has been recognized in past studies. Precision-recall curves are found to provide
more detailed information than an ROC curve in cases involving imbalanced data [25]. The trade-off
between the F1-score and threshold control has also been suggested to provide a proper measure of the
actual efficacy capability of models [27]. Previous studies have also clarified the effectiveness of
applying the F1-score in combination with deep learning approaches on a large scale, reaching peaks of
0.58 and 0.57 [28] in identifying overall pavement damage.

Subfigures 9(d) and 9(a) in Fig. 9 indicate the F1-Confidence curves of the YOLOv8-M and
YOLOVS5-S models, respectively, and the curves are found to indicate similarities. The effectiveness of
each YOLO variant varies across the five damage classes, as illustrated by the F1-confidence curves in
Figure 9 and further supported by the confusion matrices in Figure 10. YOLOvVS approaches indicate
significant consistency and high F1-scores at every confidence interval, especially with Alligator Cracks,
according to the data. These results effectively verify the hypothesis that YOLOv8 models are more
relevant and applicable in cases involving extensive applications, considering both high efficacy
capability and consistency at confidence levels.

Class-specific challenges and the role of imbalance

Accuracy of detection for all YOLO versions significantly varied with the damage type, as given
in Table 5. Alligator Cracks always demonstrated the highest recall and precision due to their
distinguishable characteristics and their adequate number of samples in the database. Lateral Cracks,
however, demonstrated the lowest detection performance among all models due to the challenges caused
by their low-contrast appearance and class dominance. The contrast highlights the necessity for the
employment of data augmentation techniques and special training methods for the improvement of the
detection rates of minor classes, for instance, the Lateral Cracks.

Error patterns and qualitative interpretation

Figure 10 shows the misclassification tendencies of YOLOvS5-S and YOLOvV5-M, most notably
for fragile damage types like Longitudinal and Transverse Cracks, commonly misclassified as
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background. This reflects that the YOLOVS versions are unable to derive discriminative characteristics
for less noticeable damage types, a problem probably exacerbated by class unbalance in the training
dataset. Comparatively, YOLOv8-S and YOLOv8-M substantially reduce these problems, the
YOLOV8-M version in particular registering the lowest rates of misclassification in separating fine
cracks from the background. This highlights the improved architectural abilities of YOLOv8 when
identifying optically challenging or low-contrast types of damage.

The results of this analysis are that the architectural innovations of YOLOVS, particularly in the
medium (M) form, are responsible for more accurate and repeatable road damage classification in all
categories.

As illustrated in Fig. 11(a) ground truth annotations are the golden standard used for model
prediction assessment. Fig. 11(b) indicates multiple missed detections in the output of YOLOvVS-S,
whereas Fig. 11(c) shows the better localization of YOLOv8-M and increased confidence value. These
subfigures highlight the comparative performance of the models in varying environmental conditions,
wherein YOLOVS-M is always able to produce fewer false positives and yield better prediction
confidence.

Comparison with Previous YOLO-based Road Damage Studies

Compared with prior YOLO-based road damage detection studies, our findings are broadly
consistent with the performance patterns reported in the literature. Earlier works using GRDDC 2020 or
similar benchmark datasets have shown that YOLOv3 and YOLOVS achieve competitive mAP@0.5
values for road damage categories under controlled, single-domain settings [7], [9], [11]. In our
experiments on the hybrid GRDDC-PUPR dataset, the best-performing model (YOLOv8-M) achieved
an mAP@0.5 0f 0.435 and an mAP@0.5:0.95 of 0.191 on the test split (Table 4). We expect these scores
to be lower than the strongest results reported on pure GRDDC benchmarks because our setting
combines international and local images, introduces domain shift, and includes heavily imbalanced
crack classes typical of Indonesian roads.

Several pavement-distress studies have reported that thin or low-contrast cracks are
systematically harder to detect than prominent and visually salient damage, such as alligator cracking
or potholes [7], [8], [10]. Our per-class precision and recall (Tables 5 and 6) follow the same trend:
alligator cracks and potholes achieve the highest detection performance across all YOLO variants,
whereas lateral cracks remain the most challenging class, with noticeably lower precision and recall.
This convergence with previous work indicates that the main limitation arises not from the proposed
models themselves, but from intrinsic visual characteristics of the damage and the severe class
imbalance in the dataset.

Our comparison between YOLOvS and YOLOvVS aligns with recent object-detection studies,
which show that newer YOLO variants generally improve detection accuracy at the cost of higher
computational demand [10], [11]. In our hybrid GRDDC-PUPR setting, YOLOV8-M provides the best
overall precision and mAP, while YOLOvS5-S and YOLOvVS5-M offer more favorable trade-offs for
resource-constrained or real-time deployments. These results confirm, in the Indonesian road-damage
context, the architectural trade-offs reported in earlier YOLO research and provide additional evidence
based on a mixed international-local dataset.

Limitation and Future Work

We acknowledge several limitations in this study. First, we trained all models for only 10 epochs
because of computational constraints. This restricted training schedule may prevent the models from
reaching their full performance potential; extending the number of epochs or conducting more extensive
hyperparameter tuning could further improve detection accuracy. Second, although the hybrid GRDDC-
PUPR dataset reflects a variety of road and environmental conditions, we did not perform external
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validation on independent datasets or video streams. As a result, the models' generalization to unseen
regions and weather conditions remains uncertain. Third, even with oversampling and class-weighted
loss functions, class imbalance continues to affect the detection of underrepresented categories,
particularly lateral cracks. In future work, we plan to investigate more advanced imbalance-handling
strategies, incorporate additional baseline detectors such as Faster R-CNN or SSD, evaluate newer
YOLO variants, and conduct real-time field trials on mobile or edge platforms to assess deployment
readiness in operational road-inspection scenarios.

CONCLUSION

This work aims to explore which YOLO variant works best in the automated road damage
detection task with the use of the hybrid GRDDC 2020-PUPR dataset. Four models, namely YOLOVS5-
S, YOLOVS5-M, YOLOV8-S, and YOLOvV8-M, have been tested on the five active damage classes
(Alligator, Transverse, Longitudinal, Pothole, and Lateral Cracks) through an overall training and
testing process utilizing an 8:1:1 hold-out split.

From the experimental results, it is clear that these four models can effectively locate major types
of damage with acceptable accuracy. On the test sets, the YOLOv8-M model yielded overall superior
performance with precision at 0.536, recall at 0.438, mAP@0.5 at 0.435, and mAP@0.5:0.95 at 0.191,
which made it the optimal choice regarding accuracy and reliability. On the other hand, YOLOvVS5-S
offered lower accuracy but with comparable recall rate at 0.426 with the lowest computational
requirements, which makes it an attractive choice for real-time applications with resource-constrained
devices. YOLOv5-M and YOLOVS8-S presented balancing perspectives regarding both accuracy and
efficiency, which allows multiple options according to deployment constraints.

These results confirm that the main objective of identifying the most accurate model for
Indonesian road-damage detection is only partly fulfilled since it leads to an overall comparison among
the four models, with YOLOV8-M being the ideal choice under certain conditions, mainly regarding
accuracy and reliability. YOLOVS-S is more appropriate under other conditions where execution speed
and devices efficiency become major issues. However, these models still lack effectiveness under
underrepresented classes with minimal contrast levels, particularly for the "Lateral Cracks" class.
Moreover, these models remain sensitive regarding class imbalances and domain variations. Future
work should be directed towards longer train durations, novel methods for dealing with class imbalances,
additional baselines, as well as evaluations at the real-world scale aiming at narrowing the gap between
benchmarking performance and real road examination requirements. These findings indicate that, for
Indonesian road networks, robust automated damage screening is feasible using off-the-shelf YOLO
models when trained on a hybrid GRDDC-PUPR dataset, although detection of minority crack classes
still requires further improvement.
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