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Accurate road damage detection is vital for ensuring road safety and 

supporting timely infrastructure maintenance. However, the question 

remains open as to which YOLO variant offers the best trade-off 

between accuracy and efficiency for road damage detection under 

Indonesian conditions when models are trained on a mixed 

international–local dataset. This study evaluates and compares the 

performance of four YOLO models: YOLOv5-S, YOLOv5-M, 

YOLOv8-S, and YOLOv8-M, for detecting road damage types, 

including Alligator Cracks, Longitudinal Cracks, Transverse Cracks, 

Potholes, and Lateral Cracks. The models are trained on a combined 

dataset from GRDDC 2020 and the Ministry of Public Works and 

Housing (PUPR) of the Republic of Indonesia, addressing challenges 

such as class imbalance and diverse road and lighting conditions. 

Results show that YOLOv8-M achieves the highest mAP@0.5 (0.435), 

with strong precision and recall for prominent damage types, making it 

the most reliable option for high-accuracy applications. The YOLOv5-

M is generally well-balanced in terms of precision and recall, while the 

YOLOv5-S focuses more on the concept of recall, thus being 

appropriate in situations where more cases of the damaged type need to 

be detected. It is also noted that all models still have problems with less 

significant kinds of road damage, especially Lateral Cracks, which has 

a likelihood of being identified under the Background category. Through 

comparison, it was determined that YOLOv8-M has the highest 

accuracy among the models using the mixed GRDDC-PUPR scheme, 

aside from still having improvements in the minority categories. 
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INTRODUCTION 

Indonesia has registered major growth in the mileage coverage of roads over the past two decades, 

making the need for monitoring the conditions necessary for timely maintenance more pressing. 

Statistics Indonesia (BPS) data show a total mileage coverage increased by 18.73%, from 542,160 km 

in 2019 to 550,735 km in 2023 [1]. Even with the growth, the task of maintaining the relevant 

infrastructure has become difficult, given that the condition of the roads can result in reduced 

transportation safety and efficiency. 

Road transport is the main mode used in goods distribution in Indonesia, with road conditions 

playing an important role in economic performance. Bad road conditions accelerate the chances of traffic 

accidents, logistics processing, and economic loss [2]. In 2022, BPS documented traffic accidents 

http://creativecommons.org/licenses/by-sa/4.0/
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amounting to 139,258 cases with estimated economic loss around IDR 280 billion [3]. Moreover, poor 

road conditions and inadequate road construction quality performance had been associated with the 

deterioration of road longevity due to decreased performance quality [4], [5]. This highlights the 

significance associated with accurate and appropriate scaled performance in road condition assessment. 

Traditional manual road surveying practices, remaining common in Indonesia until now, also 

have limitations in terms of scalability, impartialness, and objectiveness. Moreover, the findings of the 

survey may also differ from surveyor to surveyor and are dependent on the available time and labor. On 

the other hand, the use of computer vision-based AI for the automation process of road damage detection 

can help address the maintenance issue through faster and more impartial evaluation for model selection 

for the automation process to be implemented in the Indonesian setting. Therefore, a common 

framework for the comparison of the YOLO models is crucial for the identification of the most suitable 

models for a balance between detection precision and real-time applicability in the Indonesian context. 

In real-time object detection models, the You Only Look Once (YOLO) series of models have 

gained popularity across the board owing to their overall efficiency and processing speed in equal 

measure [6]. Competitive efficiency of YOLO series-based models in road damage recognition tasks 

across multiple nations and sets of research datasets had been identified in past studies [7]. However, 

their efficiency can be affected in domain-specific scenarios in terms of variations in light conditions, 

road texture, and complex road crack patterns, among others, typical of tropical road scenarios. YOLO 

series models, specifically YOLOv5, had shown efficient performance in multiple road damage 

recognition tasks but could potentially struggle in very harsh lighting conditions with complex road 

patterns such as alligator-cracked roads [8], [9]. Recent models like YOLOv8 showed architectural 

improvements for enhanced efficiency in road damage recognition tasks [10], [11]. 

Although research on road damage detection using YOLO-based approaches has emerged, there 

is a lack of empirical evidence comparing YOLOv5 and YOLOv8 within a common training and testing 

scheme, particularly for Indonesian roads. Therefore, this paper aims to provide a systematic comparison 

of YOLOv5 and YOLOv8 on a mixed GRDDC–PUPR dataset under Indonesian tropical road conditions. 

Specifically, we compare YOLOv5-S, YOLOv5-M, YOLOv8-S, and YOLOv8-M trained and evaluated 

on a combined dataset that integrates international data from GRDDC 2020 [12] and local road-damage 

images provided by the Indonesian Ministry of Public Works and Public Housing (PUPR). The main 

objective is to identify which of these models offers the most favorable balance between detection 

accuracy and inference speed for road-damage detection in Indonesia. The contributions presented in 

this research are threefold. First, this research is interested in exploring the impact of training and testing 

YOLOv5 and YOLOv8 models on a hybrid GRDDC-PUPR dataset which is a more realistic 

representation for Indonesia. Second, this research is interested in providing benchmark results for 

comparison on standard evaluation metrics for detection such as mAP at 0.5, precision, recall, and F1 

score. Third, this research offers insights into some challenges for future development for creating 

Indonesia-specific AI-assisted road maintenance systems using machine learning models. 

METHODS 

Flowchart 

This paper uses a structured approach in evaluating and comparing four different YOLO models, 

namely YOLOv5-S, YOLOv5-M, YOLOv8-S, and YOLOv8-M [13] on the task of road damage 

detection in Indonesia. From Figure 1, it is observed that the analysis began with an Exploratory Data 

Analysis phase involving GRDDC 2020 and Indonesian PUPR. This phase helped in analyzing the 

distribution of road damage issues in the GRDDC 2020 and Indonesian PUPR dataset. 
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Figure 1. Research Flowchart 

 

The dataset was then split into a train, validation, and test set using a Holdout method with an 

8:1:1 split [14]. This was followed by data augmentation, but only on the train set. The hyperparameters 

were then tuned using the validation set.  

All the YOLO models were then trained on the train set, and the selection process was performed 

on the validation set using Precision, Recall, and mAP [15]. Finally, the best models were evaluated on 

the test set, thus the unseen set constituted 10% of the entire task. The results are then plotted using 

Precision–Recall curves and F1 Confidence Analysis at different confidence thresholds. In this manner, 

the analysis is repeatable and allows for a fair comparison of the models. 

Experiment Design 

For evaluation, the current research will choose YOLOv5 and YOLOv8, given the efficiency 

demonstrated by the models in real-time object detection, according to Sami et al. [16]. YOLOv5 is 

widely used as a reliable baseline model that offers a trade-off between speed and accuracy, while 

YOLOv8 is more advanced with architecture improvements to optimize computational cost for practical 

uses [11]. 

In Figure 2 below, the basic components universally found in both models are described. The 

YOLOv5 benefits from features extraction defined by the application of CSPDarknet with 

BottleneckCSP and SPP, a PANet for multi-resolution features fusion, and the YOLOv5 detection head 

[17]. 
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Figure 2. YOLOv5 and YOLOv8 architectures (backbone–neck–head), reproduced/adapted from Ultralytics 

resources [29], [18]. 

In YOLOv8, the features are potentially improved with the adoption of C2f features in the 

backbone and neck, coupled with the application of a detection head [18]. 

For each model, an equal training protocol and data augmentation process was used on the training 

split (random cropping, rotation, and color jitter). Handling the problem of imbalance between the 

classes was considered in the training process through sampling and/or weighting of the classes. Model 

evaluation was performed on the validation split, while the final results are expressed on the test split 

(unseen) for each model. The protocols considered are helpful in comparing the YOLOv5 and YOLOv8 

models in the Indonesian road setting. 

Evaluation Metrics  

In the bid to ensure the reproducibility of the evaluation for every version of the YOLO, the 

performance of the model is tested through the metrics of IoU, precision, recall, F1 score, and the 

average precision. This is because the above-mentioned parameters are commonly used in the object 

detection tasks. 

Intersection over Union (IoU). IoU measures the overlap between a predicted bounding box 

𝐵𝑝and the corresponding ground-truth box 𝐵𝑔𝑡, and is defined as: 

 

𝐼𝑜𝑈 =  
|𝐵𝑝 ⋂ 𝐵𝑔𝑡|

|𝐵𝑝 ⋃ 𝐵𝑔𝑡|
   (1) 

 

A prediction is considered a true positive when its IoU with the matched ground-truth box exceeds 

a predefined threshold and the predicted class is correct; otherwise, it contributes to false positives or 

false negatives depending on matching outcomes. 

Precision, Recall, and F1-score. Based on the counts of true positives (TP), false positives (FP), 

and false negatives (FN), precision and recall are computed as: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
.        (2) 

 

The F1-score provides a single measure that balances precision and recall, which is particularly 

informative under class imbalance: 

 

𝐹1 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙
                (3) 

 

Average Precision (AP) and mean Average Precision (mAP). For each class, the Precision–

Recall (PR) curve is obtained by sweeping the confidence threshold over the detector outputs and 

computing precision and recall at each operating point. The Average Precision (AP) for a class is defined 

as the area under its PR curve: 

 

𝐴𝑃 = ∫ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙) 𝑑𝑅𝑒𝑐𝑎𝑙𝑙.
1

0
     (4) 

 

The mean Average Precision (mAP) is then computed by averaging AP values across all evaluated 

classes: 

 

𝑚𝐴𝑃 =
1

𝐾
∑ 𝐴𝑃𝑘

𝐾
𝑘=1     (5) 

 

where 𝐾denotes the number of classes. 

Following common object-detection practice, we report mAP@0.5, which uses an IoU threshold 

of 0.5, and mAP@0.5:0.95, which averages AP over multiple IoU thresholds from 0.50 to 0.95 with a 

step of 0.05 (COCO-style evaluation). In addition, we report PR curves to visualize model behavior 

under varying confidence thresholds, and we analyze F1–confidence curves to identify the confidence 

level that yields the best balance between precision and recall for each model. 

The definitions of IoU, precision, recall, F1-score, AP, and mAP used in this study follow 

standard formulations commonly adopted in deep learning–based object detection benchmarks and prior 

work [30]. 

Dataset 
On account of the analogous circumstances in Indonesia and Indian cases relating to roads, this 

research combines the GRDDC 2020 dataset with the Indonesian PUPR dataset. The GRDDC 2020 

dataset is a set of 25, 336 labeled pictures from both Japan and India. On the contrary, the PUPR dataset 

consists of anonymized pictures of damaged roads in different Indonesian provinces [19], [20]. These 

PUPR pictures have been collected with permission from the relevant institution, and the timeframe 

collected was similar in both cases. There are several factors that affect the pattern of damage, including 

overuse, drainage issues, and rainfall. 

After filtering, harmonizing, and implementing quality control, the end result is the fusion of a 

dataset of 15,581 images gathered from both the GRDDC and the PUPR data sources. Images with 

inconsistent labels, heavily corrupted images, and images lacking labels were removed from the final 

dataset. The dataset of 15,581 images comprises images from the GRDDC-2020 source: 11,123 images, 

and the PUPR source: 4,458 images. 

To ensure label consistency across all datasets, a label harmonization process was applied. 

Damage categories from the GRDDC and PUPR datasets were mapped into a unified taxonomy 

consisting of eight road damage classes. Semantically equivalent labels were merged, while classes that 

had no corresponding instances after harmonization were excluded from further analysis. Of the eight 
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retained classes, three classes contain no instances in the final dataset. In practice, the model was defined 

with eight labels, but training was effectively performed on five labels with non-zero instances. 

Exploratory Data Analysis and Preprocessing 

The combined dataset includes 15,581 images and is split 8:1:1 into training (12,453), validation 

(1,571), and testing (1,557) sets [21]. The split was performed at the image level using stratified random 

sampling to preserve the class distribution across splits, with a fixed random seed for reproducibility. 

Although the unified taxonomy defines eight damage categories, only five classes contain non-zero 

instances in the final combined dataset: Alligator Crack, Longitudinal Crack, Transverse Crack, Pothole, 

and Lateral Crack. Figure 3 summarizes the distribution of annotated instances for these five active 

classes in the combined GRDDC–PUPR training set.  

 

Figure 3. Class distribution of annotated road-damage instances in the combined GRDDC–PUPR training set. 

As shown in Figure 3, the biggest group of cracks in the dataset is that of the pothole type, with 

more than 12,000 examples, followed by longitudinal and alligator cracks with around 9,000 examples 

for each type. Lateral and transverse cracks are under-represented. The distribution of the cracks is not 

equally proportioned. This is consistent with previous studies employing GRDDC, in which the 

normalization exhibited a significantly greater proportion of the population for the pothole type 

compared with the other [22], [23]. The above-mentioned uneven distribution may affect the training 

and test of the classifiers. To prevent the majority-class bias, several techniques for addressing the 

imbalance were employed during training. These include class-aware oversampling of the minority 

classes and class-weighted loss [24], [25]. 

RESULT AND DISCUSSION 

Training and Validation Result 

YOLOv5-S 

YOLOv5-S was trained for 10 epochs on the RTX 4060 Ti card with 16 GB of VRAM at a batch 

size of 8. During both the train and validation phases, there was an evident reduction in all major loss 

components, including box loss, loss on the classification, and Distribution Focal Loss. This pointed 

towards the convergence of the entire learning process during the train phase (Figure 4). There were no 

major oscillations in both the train and validation loss curves. 
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(a) Yolov5-S training result 

Figure 4. Training and validation curves on the hybrid GRDDC–PUPR dataset for YOLOv5-S 

 

On the quantitative side, YOLOv5-S displayed the strongest improvement regarding the metric 

of recall, with this metric increasing from an initial training value of 0.135 to 0.426 after the first 10 

epochs, while precision reached 0.466 and mAP@0.5 0.404 (Table 1). The overall mAP scores of all 

variants also elevated from somewhat low values initially to relatively higher, although modest, values. 

These trends support the hypothesis that YOLOv5-S prioritizes recall compared with the larger YOLOv5-M model. 

Suitability/Interpretation: YOLOv5-S is suitable for applications requiring a maximal coverage 

of detections (e.g., initial screening or safety inspection applications, where a missed detection has an 

expensive consequence). The training process indicates a reliable enhancement of recall with a small 

number of training iterations. 

YOLOv5-M 

In YOLOv5-M, the same set of experiment parameters were used (10 epochs, RTX 4060 Ti, batch 

size of 8), and there were also declines in both train and validation loss values, reflecting healthy learning 

behavior (Figure 5). There was a smooth convergence of loss terms, and progress was also seen in 

validation metrics. 

 

mailto:mAP@0.5
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(b) Yolov5-M training result 

Figure 5. Training and validation curves on the hybrid GRDDC–PUPR dataset for YOLOv5-M 

 

Quantitatively, YOLOv5-M increased recall from 0.110 to 0.421 over the 10 epochs, and achieved 

a validation precision of 0.488 with mAP@0.5 0.415. These improvements in recall, precision, and mAP 

(Table 1) indicate that YOLOv5-M attains a favorable trade-off between sensitivity and false positives 

compared with the smaller YOLOv5-S model. 

Interpretation / suitability: YOLOv5-M provides a balanced option when both detection coverage 

and acceptable false positive rates are required. It is a good candidate for deployments that require 

moderate inference speed with improved detection robustness over the smallest variant. 

YOLOv8-S 

During training of the YOLOv8-S, which was done under the same hardware and 

hyperparameters as in other experiments, there was a steady drop in the loss components, as well as 

improvements in the validation metrics (Figure 6). The training curves show that there were no sudden 

divergence issues in the optimization of the model. 
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(c) Yolov8-S training result 

Figure 6. Training and validation curves on the hybrid GRDDC–PUPR dataset for YOLOv8-S 

 

After 10 epochs, YOLOv8-S reached a validation precision of 0.494, recall of 0.437, and mAP@0.5 of 

0.430 (Table 1), with all loss components decreasing steadily (Figure 6). The combination of higher precision 

and substantial mAP gains indicates that YOLOv8-S reduces false positives compared with the 

YOLOv5 variants, while simultaneously improving overall detection accuracy. 

Interpretation/suitability: This variant will be more suited to situations where precision is of key 

importance and false positives incur significant costs. Based on its behavior, it seems to be acting 

conservatively and accurately within its budget of epochs. 

YOLOv8-M 

YOLOv8-M also demonstrated stable convergence of training and validation losses across the 10 

epochs on the RTX 4060 Ti (Figure 7-model panel for YOLOv8-M). Loss reductions were smooth, and 

validation metrics trended upward with epoch number, indicating effective optimization under the 

selected settings. 
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(d) Yolov8-M training result 

Figure 7. Training and validation curves on the hybrid GRDDC–PUPR dataset for YOLOv8-M 

 

YOLOv8-M achieved the highest validation precision among all models (0.536), with a recall of 0.438, 

mAP@0.5 of 0.435, and mAP@0.5:0.95 of 0.191 (Table 1). The corresponding training and validation curves in 

Figure 7 show smooth loss reduction and monotonic improvements in the metric. The combination of high 

precision with modest mAP gains suggests YOLOv8-M produces fewer false positives while offering 

incremental improvements in overall detection accuracy. 

Interpretation / suitability: YOLOv8-M is most suitable for applications that prioritize precision 

and low false positive rates (for example, automated decision systems where false alarms are costly). Its 

behavior suggests conservative but reliable detection performance within the given epoch budget. 

Table 1. Comparison of Training and Validation Metrics for YOLOv5 and YOLOv8 Models 

Metric YOLOv5-S YOLOv5-M YOLOv8-S YOLOv8-M 

Recall 0.426 0.421 0.437 0.438 

Precision 0.466 0.488 0.494 0.536 

mAP@50 0.404 0.415 0.430 0.435 

mAP@50-95 0.176 0.182 0.186 0.191 

Precision-Recall 

For better assessment of classification performance with varying levels of imbalance between the 

classes, we proceeded to calculate the Precision-Recall (PR) curves for all models. Although metrics 

such as accuracy and/or ROC curves are commonly used for comparing model performance, they are 

less insightful compared to PR curves, which are especially useful with less frequent classes [25], [26].  

Figure 8 below illustrates the PR curves of all four models: YOLOv5-S, YOLOv5-M, YOLOv8-

S, and YOLOv8-M, while Table 2 below provides their mean average precision at IoU ≥ 0.5 (mAP@0.5) 

for all five damage classes.  

 
 

(a) YOLOv5-S (b) YOLOv5-M 
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(c) YOLOv8-S (d) YOLOv8-M 

Figure 8. Precision-recall curves for: (a) YOLOv5-S, (b) YOLOv5-M, (c) YOLOv8-S, (d) YOLOv8-M 

Table 2. Per-class Average Precision (AP@0.5) on the Test Set for Each YOLO Variant 

Class YOLOv5-S YOLOv5-M YOLOv8-S YOLOv8-M 

Alligator Cracks 0.403 0.377 0.649 0.643 

Transverse Cracks 0.403 0.377 0.396 0.414 

Longitudinal Cracks 0.403 0.377 0.402 0.422 

Potholes 0.377 0.373 0.390 0.403 

Lateral Cracks 0.158 0.169 0.181 0.180 

 

Across models, YOLOv8-M achieved the highest overall mAP@0.5 on the test set (0.435), 

followed by YOLOv8-S (0.430), YOLOv5-M (0.415), and YOLOv5-S (0.404) (Table 4). At the class 

level (Table 2), YOLOv8 variants performed exceptionally well on Alligator Cracks, with AP@0.5 

scores of 0.649 (YOLOv8-S) and 0.643 (YOLOv8-M). In contrast, all models struggled with Lateral 

Cracks, which yielded the lowest AP@0.5 values (0.158–0.181). In contrast, all models struggled with 

Lateral Cracks, which yielded the lowest AP@0.5 values (0.158–0.181). Visually, the PR curves for 

YOLOv8 variants appear smoother across confidence thresholds, suggesting a more stable precision–

recall trade-off. 

F1-Confidence Curve 

Apart from analyzing the precision-recall curves, we also analyzed the F1 vs. confidence curve 

to find the confidence threshold that yields the best trade-off between precision and recall. Table 3 shows 

the peak F1 scores attained by each of the YOLO models along with the corresponding confidence 

threshold values on the test data. 

 

Table 3. Peak F1-score and Corresponding Confidence Threshold on the Test Set 

Model Peak F1-Score Confidence threshold at peak F1 Best-performing class at peak 

YOLOv5-S 0.43 0.210 Longitudinal Crack 
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YOLOv5-M 0.43 0.188 Transverse Crack 

YOLOv8-S 0.44 0.182 Alligator Crack 

YOLOv8-M 0.45 0.208 Alligator Crack 

The table reveals that YOLOv8-M yields the highest peak F1 score of 0.45 with a confidence 

threshold of 0.208, while YOLOv8-S yields a peak F1 score of 0.44 with a confidence threshold of 

0.182. For the YOLOv5 models, the peak F1 scores attained are 0.43, which occur at confidence 

thresholds of 0.210 for YOLOv5-S and 0.188 for YOLOv5-M, respectively. Figure 9 depicts the F1 vs. 

confidence curves of all models, which show the F1 scores attained by each of the models for each 

damage type at different confidence thresholds. 

  

(a) YOLOv5-S (b) YOLOv5-M 
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(c) YOLOv8-S (d) YOLOv8-M 

Figure 9. The F1-Confidence Curve for Each YOLO Variant 

Performance Comparison Across YOLO Variants 

This analysis evaluates and compares the performance of four different YOLO variants, namely 

YOLOv5-S, YOLOv5-M, YOLOv8-S, and YOLOv8-M, for road damage detection tasks. The 

performance analysis is carried out using four main performance measures, including precision, recall, 

mean Average Precision at IoU 0.5 (mAP@0.5), and mean Average Precision from IoU 0.5 to 0.95 

(mAP@0.5:0.95) as shown in Table 4.  

 

Table 4. Performance Comparison of YOLO Variants 

Model Precision Recall mAP@0.5 mAP@0.5:0.95 

YOLOv5-S 0.466 0.426 0.404 0.176 

YOLOv5-M 0.488 0.421 0.415 0.182 

YOLOv8-S 0.494 0.437 0.430 0.186 

YOLOv8-M 0.536 0.438 0.435 0.191 

 

As shown in Table 4, the YOLOv8 variants consistently outperformed the YOLOv5 counterparts 

across all metrics. Notably, YOLOv8-M achieved the highest detection performance with a precision of 

0.536, recall of 0.438, an mAP@0.5 of 0.435, and an mAP@0.5:0.95 of 0.191. This was closely 

followed by YOLOv8-S, which achieved an mAP@0.5 of 0.430 and mAP@0.5:0.95 of 0.186. In 

comparison, YOLOv5-M and YOLOv5-S obtained slightly lower results, with mAP@0.5 scores of 

0.415 and 0.404, respectively. 

 

Table 5. Per-class Precision on the Test Set 

Class YOLOv5-S YOLOv5-M YOLOv8-S YOLOv8-M 

Longitudinal Crack 0.458 0.473 0.447  0.483 

Transverse Crack 0.435 0.455 0.428 0.446 
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Class YOLOv5-S YOLOv5-M YOLOv8-S YOLOv8-M 

Alligator Crack 0.554 0.535 0.536 0.563  

Potholes 0.472 0.463 0.457 0.488  

Lateral Crack 0.366 0.383 0.430  0.410  

 

Table 6. Per-class Recall on the Test Set 

Class YOLOv5-S YOLOv5-M YOLOv8-S YOLOv8-M 

Longitudinal Crack 0.413  0.399 0.433  0.432  

Transverse Crack 0.469 0.515 0.487 0.512 

Alligator Crack 0.620 0.625 0.671 0.635 

Potholes 0.380 0.399 0.414 0.396 

Lateral Crack 0.175 0.181 0.193 0.199 

 

Figure 10 also indicates the results in the form of normalized confusion tables for the discovery 

of patterns of misclassification for the four versions of YOLO, highlighting the variation in performance 

for low-contrast damage classes like longitudinal and transverse cracks. 

 

 

 

(a) Conf matrix YOLOv5-S 
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(b) Conf matrix YOLOv5-M 

 

(c ) Conf matrix YOLOv8-S 
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(d)  Conf matrix YOLOv8-M 

 

Figure 10 (a) YOLOv5-S, (b) YOLOv5-M, (c) YOLOv8-S, and (d) YOLOv8-M. Particularly for subtle damage 

types, such as longitudinal and Transverse Cracks, which are frequently misidentified as background, darker 

colors suggest a higher frequency of misclassification. 

To offer qualitative observations of model performance, Figure 11 shows the ground truth 

annotation alongside the YOLOv5-S and YOLOv8-M predictions. 
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(a) Ground truth annotations of road damage images 

 
(b) YOLOv5-S prediction 

 
(c) YOLOv8-M prediction 

Figure 11. Visual comparison of the experimental results for road damage detection: (a) Ground truth annotation, 

(b) YOLOv5-S predictions, and (c) YOLOv8-M predictions. YOLOv8-M shows higher confidence and less false 

positives, especially in the longitudinal and alligator crack samples. 

Discussion 

Interpretation of overall trends and deployment-oriented implications 

As given in Table 1, YOLOv5-S prioritizes Recall, making it suitable for applications where 

achieving maximum detection is a priority. YOLOv8-M has been found to offer maximum precision 

and is suitable for applications where low false positive values are required. YOLOv5-M and YOLOv8-
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S offer balanced solutions for trade-offs based on which they should be utilized for achieving maximum 

speed, accuracy, and precision.  

YOLOv8-M has been found to offer maximum precision for almost all types of damage, 

especially for Alligator Cracks and Potholes. In comparison, YOLOv5-S still holds relevance for 

applications with consistent detection within specific classes, especially Transverse Cracks. To improve 

detectability within all classes, there is still a need for optimal optimization, especially for those classes 

with low performance, including Lateral Cracks.  

The YOLOv8 model has shown significant improvement in road damage detection with increased 

precision and location accuracy and has been found to be competitive in retaining similar levels of Recall. 

The negligible levels of performance variation among YOLOv8-M and YOLOv8-S imply trade-offs in 

simplicity and speed.  

YOLOv8-M is found to be more accurate than YOLOv5-S but with increased computational 

complexity. In comparison, YOLOv5-S promotes increased inference speed and is deemed suitable for 

applications with real-time inputs. These results imply trade-offs among computational complexity, 

accuracy, and speed for different variants of YOLO models. 

F1-confidence interpretation and threshold behavior 

This analysis aims to evaluate the F1-Confidence Curve in an attempt to establish the efficacy 

capabilities of a variety of confidence levels. The F1-score is an appropriate measure of efficacy in cases 

involving two-class imbalance issues relevant in the application of this research. A trade-off between 

precision and recall has been recognized in past studies. Precision-recall curves are found to provide 

more detailed information than an ROC curve in cases involving imbalanced data [25]. The trade-off 

between the F1-score and threshold control has also been suggested to provide a proper measure of the 

actual efficacy capability of models [27]. Previous studies have also clarified the effectiveness of 

applying the F1-score in combination with deep learning approaches on a large scale, reaching peaks of 

0.58 and 0.57 [28] in identifying overall pavement damage.  

Subfigures 9(d) and 9(a) in Fig. 9 indicate the F1-Confidence curves of the YOLOv8-M and 

YOLOv5-S models, respectively, and the curves are found to indicate similarities. The effectiveness of 

each YOLO variant varies across the five damage classes, as illustrated by the F1-confidence curves in 

Figure 9 and further supported by the confusion matrices in Figure 10. YOLOv8 approaches indicate 

significant consistency and high F1-scores at every confidence interval, especially with Alligator Cracks, 

according to the data. These results effectively verify the hypothesis that YOLOv8 models are more 

relevant and applicable in cases involving extensive applications, considering both high efficacy 

capability and consistency at confidence levels. 

Class-specific challenges and the role of imbalance 

Accuracy of detection for all YOLO versions significantly varied with the damage type, as given 

in Table 5. Alligator Cracks always demonstrated the highest recall and precision due to their 

distinguishable characteristics and their adequate number of samples in the database. Lateral Cracks, 

however, demonstrated the lowest detection performance among all models due to the challenges caused 

by their low-contrast appearance and class dominance. The contrast highlights the necessity for the 

employment of data augmentation techniques and special training methods for the improvement of the 

detection rates of minor classes, for instance, the Lateral Cracks. 

Error patterns and qualitative interpretation 

Figure 10 shows the misclassification tendencies of YOLOv5-S and YOLOv5-M, most notably 

for fragile damage types like Longitudinal and Transverse Cracks, commonly misclassified as 
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background. This reflects that the YOLOv5 versions are unable to derive discriminative characteristics 

for less noticeable damage types, a problem probably exacerbated by class unbalance in the training 

dataset. Comparatively, YOLOv8-S and YOLOv8-M substantially reduce these problems, the 

YOLOv8-M version in particular registering the lowest rates of misclassification in separating fine 

cracks from the background. This highlights the improved architectural abilities of YOLOv8 when 

identifying optically challenging or low-contrast types of damage. 

The results of this analysis are that the architectural innovations of YOLOv8, particularly in the 

medium (M) form, are responsible for more accurate and repeatable road damage classification in all 

categories. 

As illustrated in Fig. 11(a) ground truth annotations are the golden standard used for model 

prediction assessment. Fig. 11(b) indicates multiple missed detections in the output of YOLOv5-S, 

whereas Fig. 11(c) shows the better localization of YOLOv8-M and increased confidence value. These 

subfigures highlight the comparative performance of the models in varying environmental conditions, 

wherein YOLOv8-M is always able to produce fewer false positives and yield better prediction 

confidence. 

Comparison with Previous YOLO-based Road Damage Studies 

Compared with prior YOLO-based road damage detection studies, our findings are broadly 

consistent with the performance patterns reported in the literature. Earlier works using GRDDC 2020 or 

similar benchmark datasets have shown that YOLOv3 and YOLOv5 achieve competitive mAP@0.5 

values for road damage categories under controlled, single-domain settings [7], [9], [11]. In our 

experiments on the hybrid GRDDC–PUPR dataset, the best-performing model (YOLOv8-M) achieved 

an mAP@0.5 of 0.435 and an mAP@0.5:0.95 of 0.191 on the test split (Table 4). We expect these scores 

to be lower than the strongest results reported on pure GRDDC benchmarks because our setting 

combines international and local images, introduces domain shift, and includes heavily imbalanced 

crack classes typical of Indonesian roads. 

Several pavement-distress studies have reported that thin or low-contrast cracks are 

systematically harder to detect than prominent and visually salient damage, such as alligator cracking 

or potholes [7], [8], [10]. Our per-class precision and recall (Tables 5 and 6) follow the same trend: 

alligator cracks and potholes achieve the highest detection performance across all YOLO variants, 

whereas lateral cracks remain the most challenging class, with noticeably lower precision and recall. 

This convergence with previous work indicates that the main limitation arises not from the proposed 

models themselves, but from intrinsic visual characteristics of the damage and the severe class 

imbalance in the dataset. 

Our comparison between YOLOv5 and YOLOv8 aligns with recent object-detection studies, 

which show that newer YOLO variants generally improve detection accuracy at the cost of higher 

computational demand [10], [11]. In our hybrid GRDDC–PUPR setting, YOLOv8-M provides the best 

overall precision and mAP, while YOLOv5-S and YOLOv5-M offer more favorable trade-offs for 

resource-constrained or real-time deployments. These results confirm, in the Indonesian road-damage 

context, the architectural trade-offs reported in earlier YOLO research and provide additional evidence 

based on a mixed international–local dataset. 

Limitation and Future Work 

We acknowledge several limitations in this study. First, we trained all models for only 10 epochs 

because of computational constraints. This restricted training schedule may prevent the models from 

reaching their full performance potential; extending the number of epochs or conducting more extensive 

hyperparameter tuning could further improve detection accuracy. Second, although the hybrid GRDDC–

PUPR dataset reflects a variety of road and environmental conditions, we did not perform external 
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validation on independent datasets or video streams. As a result, the models' generalization to unseen 

regions and weather conditions remains uncertain. Third, even with oversampling and class-weighted 

loss functions, class imbalance continues to affect the detection of underrepresented categories, 

particularly lateral cracks. In future work, we plan to investigate more advanced imbalance-handling 

strategies, incorporate additional baseline detectors such as Faster R-CNN or SSD, evaluate newer 

YOLO variants, and conduct real-time field trials on mobile or edge platforms to assess deployment 

readiness in operational road-inspection scenarios. 

CONCLUSION 

This work aims to explore which YOLO variant works best in the automated road damage 

detection task with the use of the hybrid GRDDC 2020-PUPR dataset. Four models, namely YOLOv5-

S, YOLOv5-M, YOLOv8-S, and YOLOv8-M, have been tested on the five active damage classes 

(Alligator, Transverse, Longitudinal, Pothole, and Lateral Cracks) through an overall training and 

testing process utilizing an 8:1:1 hold-out split.  

From the experimental results, it is clear that these four models can effectively locate major types 

of damage with acceptable accuracy. On the test sets, the YOLOv8-M model yielded overall superior 

performance with precision at 0.536, recall at 0.438, mAP@0.5 at 0.435, and mAP@0.5:0.95 at 0.191, 

which made it the optimal choice regarding accuracy and reliability. On the other hand, YOLOv5-S 

offered lower accuracy but with comparable recall rate at 0.426 with the lowest computational 

requirements, which makes it an attractive choice for real-time applications with resource-constrained 

devices. YOLOv5-M and YOLOv8-S presented balancing perspectives regarding both accuracy and 

efficiency, which allows multiple options according to deployment constraints.  

These results confirm that the main objective of identifying the most accurate model for 

Indonesian road-damage detection is only partly fulfilled since it leads to an overall comparison among 

the four models, with YOLOv8-M being the ideal choice under certain conditions, mainly regarding 

accuracy and reliability. YOLOv5-S is more appropriate under other conditions where execution speed 

and devices efficiency become major issues. However, these models still lack effectiveness under 

underrepresented classes with minimal contrast levels, particularly for the "Lateral Cracks" class. 

Moreover, these models remain sensitive regarding class imbalances and domain variations. Future 

work should be directed towards longer train durations, novel methods for dealing with class imbalances, 

additional baselines, as well as evaluations at the real-world scale aiming at narrowing the gap between 

benchmarking performance and real road examination requirements. These findings indicate that, for 

Indonesian road networks, robust automated damage screening is feasible using off-the-shelf YOLO 

models when trained on a hybrid GRDDC–PUPR dataset, although detection of minority crack classes 

still requires further improvement. 
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