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 Proteins play a vital role in various tissue and organ activities and play 
a key role in cell structure and function. Humans can produce 
thousands of proteins, each consisting of tens or hundreds of 
interconnected amino acids. The sequence of amino acids determines 
the protein's 3D structure and conformational dynamics, which in turn 
affects its biological function. Understanding protein function is very 
important, especially for biological processes at the molecular level. 
However, extracting or studying features from protein sequences that 
can predict protein function is still challenging: it takes a long time, is 
an expensive process, and has yet to be maximized in accuracy, 
resulting in a large gap between protein sequence and function. Protein 
embedding is essential in function protein prediction using a deep 
learning model. Therefore, this study benchmarks three protein 
embedding models, ProtBert, T5, and ESM-2, as a part of function 
protein prediction using the LSTM Model. We delve into protein 
embedding performance and how to leverage it to find optimal 
embeddings for a given use case. We experimented with the CAFA-5 
dataset to see the optimal embedding model in protein function 
prediction. Experiment results show that ESM-2 outperforms from 
ProtBert and T5. On training, the accuracy of ESM-2 is above 0.99, 
almost the same as T5, but still above ProtBert. Furthermore, testing 
on five samples of protein sequence shows that ESM2 has an average 
hit rate of 93.33% (100% for four samples and 66.67% for one 
sample). 
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INTRODUCTION 
 

Understanding protein function becomes crucial in the era of genetics and molecular biology that 
continues to develop [1]. Various genome sequencing projects have generated millions of protein 
sequences, especially with the advancement of sequencing technology and its application in the 
metagenomics area. This opens up opportunities for researching new drugs and helps overcome genetic 
diseases that are still a mystery in the medical world. Research on protein function also helps identify 
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molecular pathways involved in biological processes, such as cell growth, immune response, and wound 
healing [2] [3]. 

Protein function prediction is one of the main tasks in bioinformatics that can help in various 
biological problems, such as understanding disease mechanisms or finding drug targets. Several approaches 
to predicting proteins have been developed, ranging from approaches based on protein sequences [1] [4] 
[5] [6] [7], gene expression [8], sequence similarity [9], network interaction [10] [11], and text mining [12]. 
However, determining protein function experimentally based on sequence still takes a long time, is an 
expensive process, and has a less-than-optimal level of accuracy, resulting in a large gap between protein 
sequence and function. In addition, previous studies have also had challenges in extracting or studying 
features from protein sequences that can predict function and ensuring that the prediction is consistent with 
the background biological knowledge of the function and its relationship. 

In addition to sequence features, many other methods are available to predict protein function based 
on protein-protein interaction networks [10] [13] [14] and protein structure [15] [16] [17]. However, apart 
from the sequence, most features are challenging to obtain or unavailable for many proteins, limiting their 
scope. In previous studies, the performance of sequence-based function prediction methods was still lower 
than that of methods that combined many features. 

In deep learning, especially in protein function prediction, a protein embedding model is crucial in 
representing amino acids' complex, high-dimensional sequences in a way that captures their biological 
properties and relationships. Furthermore, embedding models has an important role in dimensionality 
reduction, capturing relationships, improving prediction accuracy, handling sparse data, and transfer 
learning. Specifically for accuracy, the suitable embeddings capture the semantic relationships between 
data points, enabling the model to make more accurate predictions. These embeddings are then used as 
inputs for various predictive tasks, such as protein structure prediction, function annotation, and interaction 
analysis. 

Protein embedding models have shown great promise in protein function prediction, but several 
challenges and limitations can affect their performance, including Data Sparsity and Imbalance, Contextual 
Information Loss, Transfer Learning Challenges, Sequence Length and Complexity, and Computational 
Limitations. Therefore, this study tries to conduct a study on three protein embeddings: ProtBert [18] [19], 
T5 [20], and ESM-2 [21], to see the performance of the prediction training results using the LSTM Model. 
Embedding models will be carried out on the CAFA-5 dataset to become input to the deep learning model. 
Furthermore, this paper contributes to benchmarking these three embedding models to learn the best model 
for capturing the semantic representation of protein sequence function. 
 
METHODS 
 

This study proposes using three embedding methods, Probert, T5, and ESM-2, to encode proteins' 
functional and structural properties based on their sequences into a machine-friendly format (vector 
representation). We compare which embedding method is the most effective in providing protein function 
prediction results based on the hit rate metric. The Function Prediction is built using the LSTM architecture. 
Figure 1 illustrates the process of predicting protein function using three different embedding models. The 
process begins by loading data from the CAFA-5 dataset, where data in TSV and FASTA formats are 
combined. Each embedding takes the protein's amino acid sequence and converts it into a numeric 
representation or vector. These vectors are then further processed using the LSTM model, which consists 
of two main layers with different unit sizes. This model is also equipped with a dropout layer to prevent 
overfitting. The final output of this model is used to predict protein function and is evaluated using relevant 
metrics. This approach combines methods from various embedding models to produce more accurate 
protein function predictions. 
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Figure 1. Proposed Research Design 

Dataset 
The dataset used in this study is the CAFA-5 (Critical Assessment of Functional Annotation) 

competition [22] [23]. CAFA-5 (Critical Assessment of Functional Annotation, 5th edition) is a 
community-driven challenge designed to evaluate the performance of computational methods for predicting 
protein function. The CAFA challenge focuses on assessing the ability of models to accurately annotate 
proteins with Gene Ontology (GO) terms, which describe biological processes, molecular functions, and 
cellular components. The goal of CAFA is to benchmark the progress of protein function prediction 
methods, providing a platform for comparing different approaches and pushing the field forward. 

The dataset for CAFA-5 consists of a large collection of protein sequences that are either newly 
discovered or uncharacterized, meaning their functions are not yet known at the time of the challenge. 
Participants in the CAFA-5 challenge are tasked with predicting the functions of these proteins, and the 
predictions are later evaluated against experimentally verified annotations that become available over time. 
The dataset includes proteins from various species, providing a diverse range of sequences for testing the 
generalizability of prediction methods. 

In addition to protein sequences, the CAFA-5 dataset typically includes associated metadata, such as 
organism information and related GO terms for proteins that have some existing annotations. This dataset 
serves as a valuable resource for researchers working on protein function prediction, allowing them to test 
and refine their models in a competitive setting with real-world relevance. The results of the challenge 
contribute to improving the accuracy and reliability of computational methods for protein annotation, which 
is critical for understanding protein roles in biology and disease.  

This dataset consists of two main files, namely train and test files, with .tsv and .fasta formats. Each 
file in this dataset has attributes such as Protein_ID, Sequence, GO_Term_ID, and aspects of protein 
function that include Cellular Component (CC), Biological Process (BP), and Molecular Function (MF) 
categories. The training files are merged into a single dataset so all attributes from different files can be 
used, increasing the total data to obtain a more comprehensive dataset. It is essential because each protein 
can have many different protein functions, all of which are recorded in this dataset. The sample of the 
CAFA-5 dataset used can be seen in Table 1. 
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Table 1. Sample CAFA-5 dataset 

Protein 
ID Term ID Ontology Sequence 

Q61824 

GO:0071944 CCO MAERPARRAPPARALLLALAGALLAPRAARGMSLWDQRGTY
EVARALLSKDPGIPGQSIPAKDHPDVLTVLQLESRDLILSLERN
EGLIANGFTETHYLQDGTDVSLTRNHTDHCYYH... 
 

GO:0005575 CCO 
GO:0005515 MFO 
GO:0005488 MFO 

P29618 
GO:0005515 MFO MEQYEKEEKIGEGTYGVVYRARDKVTNETIALKKIRLEQEDE

GVPSTAIREISLLKEMHHGNIVRLHDVIHSEKRIYLVFEYLDLD
LKKFMDSCPEFAKNPTLIKSYLYQ... 

GO:0005488 MFO 
GO:0003674 MFO 

A2RSY6 
GO:0008344 BPO MENMAEEELLPQEKEEAQVRVPTPAPDSAPVPAPAADTALDS

APTPDSDPAPALAPAPAPALSPSLASVPEEAESKRHISIQRRLA
DLEKLAFGTEGD... 

GO:0032501 BPO 
GO:0030534 BPO 

Q9JIX8 
GO:0005622 CCO MWGRKRPNSSGETRGILSGNRGVDYGSGRGQSGPFEGRWRK

LPKMPEAVGTDPSTSRKMAELEEVTLDGKPLQALRVTDLKAA
LEQRGLAKSGQKSALVKRLKGALMLENLQKHSTPHAA... 

GO:0043229 CCO 
GO:0031981 CCO 

Q5F3W6 

GO:0005515 MFO MVDREQLVQKARLAEQAERYDDMAAAMKNVTELNEPLSNE
ERNLLSVAYKNVVGARRSSW 
RVISSIEQKTSADGNEKKIEMVRAYREKIEKELGAVCQDVLSL
LDNYLIKNCSETQYESK... 

GO:0005488 MFO 

GO:0003674 MFO 
 
Probert, 

ProBERT embedding is a specialized adaptation of the BERT (Bidirectional Encoder 
Representations from Transformers) model, designed to handle legal language and documents [18] [19]. 
The foundational idea behind ProBERT is to fine-tune BERT on legal-specific corpora so that it captures 
the unique linguistic patterns and terminologies used in legal texts. BERT, initially introduced by Devlin et 
al., uses a transformer-based architecture that excels in understanding the context of words by processing 
the text in both directions (left-to-right and right-to-left) [24]. ProBERT builds upon this foundation, 
focusing on legal datasets to develop a model that is more adept at handling the intricacies of legal 
languages, such as statutory terms, legal jargon, and complex sentence structures. By training on legal 
documents, ProBERT aims to improve performance in tasks like legal document classification, contract 
analysis, and legal text retrieval. 

The ProBERT model generates embeddings by passing the input text through multiple transformer 
layers, each of which refines the representation of the text. These embeddings are context-aware, meaning 
that they capture the meaning of a word or phrase in relation to the words around it. This is particularly 
important in legal texts, where context can dramatically alter the meaning of a term. For example, the word 
"consideration" in a legal context typically refers to something of value exchanged in a contract rather than 
the general meaning of careful thought. By producing embeddings that account for these legal-specific 
meanings, ProBERT can more accurately process legal documents for various applications, such as 
predicting legal outcomes or identifying relevant case law. One of the key advantages of ProBERT is its 
ability to handle polysemous terms, which are common in legal language. Traditional word embeddings 
might struggle with words that have multiple meanings, as they often assign a single vector to each word 
regardless of context. However, ProBERT's contextual embeddings enable it to differentiate between these 
meanings based on the surrounding text. This is particularly useful in legal applications, where precise 
interpretation of language is crucial. The development of ProBERT and its effectiveness in handling legal 
texts is detailed in related research works, such as the papers by Chalkidis et al. and Zheng et al., which 
explore how BERT-based models can be adapted for the legal domain through specialized training and 
fine-tuning on legal corpora [25] [26]. Figure 2 shows the BERT Embedding layer architecture that 
implemented in this research. 

 



Elinvo (Electronics, Informatics, and Vocational Education), 9(2), November 2024 - 242 
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online) 

 
 

Simanjuntak, H., et al.. A Benchmark Study of Protein Embeddings in Sequence-Based Classification 

 
Figure 2. BERT Architecture for Protein Function Prediction 

 
Text-To-Text Transfer Transformer (T5) 

T5 is a versatile model initially designed for natural language processing (NLP) tasks, but it has also 
been adapted for protein sequence analysis, leading to the development of T5 protein embeddings. The T5 
model, introduced by Raffel et al., is based on the transformer architecture and operates by converting all 
tasks into a text-to-text format [20]. When applied to protein sequences, T5 protein embeddings work by 
treating amino acid sequences as a form of "text" that can be encoded and processed in a similar way to 
human language. This approach enables the model to capture complex patterns and relationships within 
protein sequences, such as structural motifs, functional sites, and evolutionary conservation. 

The T5 protein embeddings are generated by training the model on large datasets of protein sequences. 
By leveraging the transfer learning capabilities of T5, the model learns to represent protein sequences in a 
high-dimensional space where similar sequences or functional regions are positioned closely together. 
These embeddings can then be used for a variety of downstream tasks, such as protein function prediction, 
structure prediction, or identifying protein-protein interactions. One of the key strengths of T5 protein 
embeddings is their ability to generalize across different protein families and species, making them a 
powerful tool for analyzing diverse biological data.  

The adaptation of T5 for protein sequences has been explored in several research papers, such as the 
work by Elnaggar et al., which demonstrated how transformer models like T5 can be fine-tuned for protein-
related tasks [18] [19]. The use of T5 in protein embedding is part of a broader trend of applying advanced 
NLP models to biological sequences, which has shown significant promise in enhancing our understanding 
of proteins and their functions. By leveraging the capabilities of T5, researchers can develop more accurate 
and efficient methods for predicting protein properties, ultimately contributing to advancements in fields 
like bioinformatics, drug discovery, and molecular biology. Figure 3 shows the T5 layer architecture 
implemented in this research. 
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Figure 3. T5 Architecture for Protein Function Prediction 

 
Evolutionary Scale Modeling 2 (ESM-2) 

ESM-2  is a powerful protein language model that builds on the success of its predecessors, ESM-1b, 
by utilizing deep learning techniques to generate protein embeddings [21]. Developed by Meta AI, ESM-
2 leverages the transformer architecture to analyze protein sequences and generate embeddings that capture 
intricate details about their structure and function. This model is trained on massive protein sequence 
datasets, allowing it to learn evolutionary patterns, structural motifs, and functional sites across a wide 
range of proteins. By embedding protein sequences into high-dimensional spaces, ESM-2 provides a 
powerful tool for understanding and predicting protein behavior, particularly in tasks such as protein 
structure prediction, functional annotation, and protein-protein interaction analysis. 

ESM-2 embeddings work by transforming protein sequences into a series of vectors, where each vector 
represents a specific amino acid in the context of its surrounding sequence. The transformer architecture 
allows ESM-2 to consider long-range dependencies within the sequence, meaning that the model can 
capture complex interactions between amino acids that may be far apart in the linear sequence but close in 
the three-dimensional structure. This ability to model distant relationships is crucial for accurately 
predicting protein structures and functions, as proteins often rely on such interactions for their biological 
activity. ESM-2’s embeddings have been shown to be effective in various downstream tasks, outperforming 
previous models in protein-related benchmarks. 

The effectiveness of ESM-2 embeddings in protein sequence analysis has been highlighted in recent 
research, where the model's ability to generalize across diverse protein families was demonstrated and 
offered accurate predictions at the atomic level [27]. Additionally, ESM-2’s scalability makes it suitable 
for large-scale protein analysis, enabling researchers to analyze millions of protein sequences efficiently 
and accurately [28]. This scalability, combined with the model’s high accuracy, positions ESM-2 as a 
valuable resource in bioinformatics, particularly for tasks like de novo protein design and understanding 
the functional implications of genetic mutations. As protein language models continue to evolve, ESM-2 
represents a significant step forward in the integration of deep learning and protein science. Figure 3 shows 
the ESM-2 layer architecture that implemented in this research. 
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Figure 4. ESM-2 Architecture for Protein Function Prediction 

 
RESULT AND DISCUSSION 
 

The effectiveness of the embedding model is evaluated through the experiments to assess its 
capabilities. The following section presents and analyzes the performance evaluation results of the 
embedding model combined with LSTM model protein function prediction. The training model built using 
the LSTM architecture uses five hyperparameters, as shown in the following Table 2.  

Table 2. LSTM Model Hyperparameter  

No. Parameter Values 
1 Optimizer Adam 
2 Batch Size 32 
3 Learning Rate 0.001 
4 Epoch 50 
5 Jumlah layer 7 
 
The metrics used to measure the results of protein function prediction are binary accuracy, AUC, 

Precision, Recall, and F-1 Score. The following figure compares the results of protein function prediction 
using the three protein embeddings. 

 

 
Figure 5. Comparison of Binary Accuracy Protein Function Prediction 
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Figure 6. Comparison of AUC Protein Function Prediction 

 

 
Figure 7. Comparison of Precision Protein Function Prediction 

 

 
Figure 8. Comparison of Recall Protein Function Prediction 
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Figure 9. Comparison of F1-Score Protein Function Prediction 

After training, we tested the protein function prediction using the model built with each different 
protein embedding. The model is tested using 5 data samples from CAFA-5: Q9CQV8, P62259, P68510, 
P61982, O70456. The testing result shows that the top 5 function predictions are GO:0005675, 
GO:0008150, GO:0110165, GO:0003674, GO:0005622. The following figures (Figure 10 and Figure 11) 
show the Comparison of Protein Function Prediction Results in the LSTM model with the T5, ProtBERT, 
and ESM-2 model embeddings. 

 

 
Figure 10. Comparison of Testing Results on 5 Protein Samples 
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c. Protein id P62259 

 
d. Protein id P61982 

 
e. Protein id O70456 

Figure 11. The detail of testing result (a,b,c,d,e) for function prediction for each protein ID.    

In this study, we analyzed the performance of three embedding models: T5, ProtBERT, and ESM-2, 
in predicting protein function based on several Gene Ontology (GO) Term IDs and Protein IDs. The analysis 
shows that each model performs differently depending on the specific GO Term ID and Protein ID. For 
GO:0005575 (Extracellular Region), the ESM-2 model generally provided better prediction results than the 
other models. For example, in the Q9CQV8 protein, ESM-2 produces the highest score of 0.772703, 
followed by T5, with a score of 0.761126 and ProtBERT, with a score of 0.696704. A similar pattern can 
be seen in the P62259 and O70456 proteins, where ESM-2 excelled with scores of 0.753928 and 0.754111, 
respectively. However, T5 delivered the best results for protein P68510 with a score of 0.738088, while for 
protein P61982, T5 also excelled with a score of 0.757815. ProtBERT has shown quite competitive but not 
dominant performance during this GO Term. On GO:0008150 (Metabolic Process), the model performance 
could be more consistent, with no model being dominantly superior. ProtBERT presents the best results on 
proteins Q9CQV8 and O70456, with scores of 0.760884 and 0.750726, respectively. On the other hand, T5 
excelled on proteins P62259 and P61982, with scores of 0.716674 and 0.737991, respectively. ESM-2 
shows good but not dominant performance on this GO Term, with its best score on protein P68510 of 
0.709408, but still below ProtBERT and T5. 

GO:0110165 (Cellular Anatomical Entity) analysis reveals that ESM-2 provided the best overall 
prediction results. For proteins Q9CQV8 and P62259, ESM-2 gave the highest scores of 0.762396 and 
0.742384. However, T5 excelled on proteins P68510 and P61982 with scores of 0.729143 and 0.748615, 
respectively. On protein O70456, ESM-2 again excelled with a score of 0.743279, indicating that this model 
can understand cellular anatomical entities well. 

In GO:0003674 (Molecular Function), T5 consistently achieves better than other models. T5 
provides the highest scores for all proteins except O70456, where ESM-2 slightly outperformed T5 with 
scores of 0.702123 and 0.702747. T5 shows the highest scores of 0.759577 for protein P62259 and 
0.750126 for protein P61982, indicating that T5 has an advantage in understanding the molecular function 
of proteins. 

For GO:0005622 (Intracellular), ESM-2 tends to be superior overall, giving the highest scores to four 
of the five proteins tested. For example, ESM-2 gives the highest scores to proteins Q9CQV8, P62259, 
P68510, and O70456 with scores of 0.700982, 0.692235, 0.612979, and 0.672331, respectively. However, 
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in protein P61982, T5 gives the highest score of 0.673006. ProtBERT shows promising results but is not 
dominant on this GO Term, with its best score on protein Q9CQV8 of 0.623393. Overall, the ESM-2 model 
provides the best prediction results for most GO Term IDs tested, especially for GO:0005575, GO:0110165, 
and GO:0005622. This suggests that ESM-2 can better capture the complex relationships in amino acid 
sequences when optimised explicitly for protein data. However, T5 performs very well and even 
outperforms some GO Term IDs, especially for GO:0003674, demonstrating its ability to understand 
proteins' sequence context and molecular function. ProtBERT, although not consistently superior, performs 
competitively on some proteins and specific GO Term IDs, especially for GO:0008150, suggesting that this 
model still has the potential to predict protein function depending on its specific context. 

In T5 embedding, the T5-Large model configuration is used, which has 24 encoder layers and 24 
decoder layers. The encoder generates an internal representation of the input sequence, while the decoder 
transforms this representation into the desired output sequence. Each layer in the encoder and decoder is 
equipped with self-attention and feed-forward neural networks, with the decoder also utilizing cross-
attention to interact with the encoder. With a hidden size of 1024 and 16 attention heads, this T5 model can 
capture various essential aspects of the protein sequence in detail. There are several variants of T5: T5-
Small has 60 million parameters, T5-Base has 220 million parameters, T5-Large has 770 million 
parameters, and T5-3B has 3 billion parameters. Using T5-Large, which has 770 million parameters, this 
model can capture more information and complex relationships in protein sequences, resulting in a more 
accurate and detailed representation for tasks such as protein function prediction.  

ProtBERT is a variant of the BERT model specifically adapted for protein data. This embedding 
model uses a bidirectional transformer architecture, allowing for a bidirectional understanding of the amino 
acid sequence context, both forward and backwards. This is important because information in an amino 
acid sequence can be contextual and dependent on previous and subsequent amino acid sequences. 
ProtBERT is specifically designed to capture patterns of relationships in amino acid sequences better than 
models that do not use a bidirectional approach. ProtBERT has 110 million parameters with 12 encoder 
layers, each with 12 attention heads. Each attention head allows the model to focus on different parts of the 
amino acid sequence simultaneously, thus capturing different types of relationships and interactions 
between amino acids. The hidden size in ProtBERT is 1024, meaning each token (amino acid) is represented 
as a vector with 1024 dimensions. This representation is rich in contextual information that is valuable for 
various bioinformatics tasks.  

The bidirectional transformer architecture ProtBERT uses consists of several key components, 
including a self-attention mechanism and a feed-forward neural network. The self-attention mechanism 
allows the model to consider each amino acid in the sequence relative to all other amino acids, providing a 
rich and comprehensive context. The feed-forward neural network processes this information to produce a 
more robust and informative final representation. In addition, ProtBERT is trained on an extensive protein 
sequence data set, making it able to understand and recognize various patterns and motifs in amino acid 
sequences. This training process allows ProtBERT to learn effective representations of protein sequences, 
which can be used for various applications such as protein function prediction, secondary structure 
determination, and protein-protein interaction analysis.  

ESM-2 is a transformer model specifically optimized for protein data. This model is designed to 
capture complex relationships in amino acid sequences by leveraging evolutionary information contained 
in protein sequences. ESM-2's ability to leverage evolutionary information allows the model to understand 
a broader biological context, which is essential for predicting complex and specific protein functions. ESM-
2 has a variable number of parameters, ranging from 8 million to 15 billion, with 33 layers. With a large 
enough number of parameters and well-tuned, ESM-2 can learn and understand complex patterns in protein 
data, making it very effective for tasks such as protein structure prediction and protein functional 
classification. In understanding patterns in protein data, having more parameters in a model like ESM-2 
helps the model capture more complex and detailed patterns. With a larger capacity, the model can learn a 
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more detailed and accurate representation of the protein data, resulting in better and more accurate 
predictions.  

From the analysis above, it can be seen that ESM-2 often excels in many categories of protein 
function, mainly because its architecture is optimized for protein data. T5 also shows strong performance 
in many cases, although only sometimes superior. ProtBERT shows variable performance and, in some 
cases, is inferior to ESM-2 and T5. The best model selection depends on the data type and task 
specifications, but ESM-2 seems to be a superior choice for complex and specific protein function 
prediction tasks. 

Table 3. The Detail Comparison Function Prediction Result for Each Embedding Model 

Protein_ID 

Predict 
Go_Term & 

Ontology 
Protbert 

Prob.score 
Eksperimen 

Protbert 

Hit Rate 
Protbert 

Predict 
Go_Term & 

Ontology 
T5-

embedding 

Prob.score 
Eksperimen 

T5-
embedding 

Hit Rate 
T5-

embedding 

Predict 
Go_Term & 

Ontology 
ESM-2 

Prob.score 
Eksperimen 

ESM-2 

Hit Rate 
ESM-2 

Q9CQV8 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0043226 
GO:0043229 
GO:0005488 
GO:0043227 

0.7196 
0.6960 
0.7162 
0.5905 
0.6624 
0.5760 
0.5627 
0.5284 
0.5169 

66,6% 

GO:0071944 
GO:0005575 
GO:0110165 
GO:0016020 
GO:0005886 
GO:0005515 
GO:0005488 
GO:0003674 
GO:0008150 
GO:0005622 

0.3736 
0.6243 
0.6210 
0.3702 
0.3674 
0.3671 
0.4419 
0.5684 
0.7690 
0.5732 

60% 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0043226 
GO:0043229 
GO:0005488 
GO:0043227 

0.7727 
0.7118 
0.7623 
0.6851 
0.7009 
0.5258 
0.6129 
0.5843 
0.5917 

66.67% 

P62259 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0043226 
GO:0043229 
GO:0005488 
GO:0043227 

0.7141 
0.6769 
0.7111 
0.6027 
0.6569 
0.5804 
0.5650 
0.5583 
0.5217 

100% 

GO:0005622 
GO:0043229 
GO:0031981 
GO:0043226 
GO:0110165 
GO:0070013 
GO:0005730 
GO:0043233 
GO:0043232 
GO:0005575 
GO:0043227 
GO:0031974 
GO:0005634 
GO:0043231 
GO:0043228 
GO:0005488 
GO:0008150 
GO:0003674 

0.6888 
0.5989 
0.3430 
0.6172 
0.7481 
0.3322 
0.3242 
0.3354 
0.3160 
0.7501 
0.5587 
0.3274 
0.3202 
0.3380 
0.3281 
0.5943 
0.5786 
0.6206 

66.67% 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0043226 
GO:0043229 
GO:0005488 
GO:0043227 

0.7539 
0.7023 
0.7423 
0.7019 
0.6922 
0.6168 
0.5937 
0.6357 
0.5305 

100% 

P68510 
 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0043226 
GO:0043229 
GO:0005488 
GO:0043227 

0.7366755 
0.6632989 
0.7336384 
0.5833655 
0.6826415 
0.6067184 
0.5915128 
0.53948826 
0.54647386 

66,6% 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0009987 
GO:0005488 

0.6500436 
0.77116716 
0.6332418 
0.661271 
0.53523976 
0.5620894 
0.54087865 

100% 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0009987 
GO:0043229 
GO:0005488 

0.7041 
0.7094 
0.6935 
0.6951 
0.6129 
0.5159 
0.5070 
0.5979 

100% 

P61982 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0043226 
GO:0043229 
GO:0005488 
GO:0043227 

0.7456174 
0.6551619 
0.7427267 
0.58277696 
0.68954253 
0.6168528 
0.60087526 
0.53723305 
0.55723524 

66,6% 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0009987 
GO:0005488 

0.67450005 
0.7457478 
0.65944827 
0.62957084 
0.55256057 
0.5431961 
0.52205485 

100% 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0009987 
GO:0005488 

0.6468 
0.7118 
0.6367 
0.6941 
0.5448 
0.5059 
0.5970 

100% 

O70456 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0043226 
GO:0005488 

0.65836674 
0.7150305 
0.6545256 
0.5959167 
0.59024465 
0.50187826 
0.5188333 

100% 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0009987 
GO:0043226 
GO:0043229 
GO:0005488 
GO:0043227 

0.82507706 
0.6729239 
0.8145351 
0.63139975 
0.7351699 
0.53219 
0.6408058 
0.6083025 
0.55399746 
0.54590976 

100% 

GO:0005575 
GO:0008150 
GO:0110165 
GO:0003674 
GO:0005622 
GO:0009987 
GO:0043226 
GO:0043229 
GO:0005488 
GO:0043227 

0.7541 
0.7109 
0.7432 
0.7021 
0.6723 
0.5125 
0.5896 
0.5622 
0.6243 
0.5022 

100% 
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Table 4. Summary of Hit Rate Comparison Function Prediction Result for Each Embedding Model 

Protein_ID 
Hit Rate Eksperimen 

ProtBERT 

Hit Rate Eksperimen 

T5-Embedding 

Hit Rate Eksperimen  

ESM-2 

Q9CQV8 66.6% 60% 66.67% 

P62259 100% 66.67% 100% 

P68510 66.6% 100% 100% 

P61982 66.6% 100% 100% 

O70456 100% 100% 100% 

 
Tables 3 and Table 4 compare the performance of protein function prediction based on sequence, 

measured using the Hit Rate on five protein IDs, namely Q9CQV8, P62259, P68510, P61982, and O70456. 
The results show that the performance of the LSTM model using the ESM-2 embedding model gives better 
results, where 54 samples get a hit rate of 100% and 1 sample gets above 60%. This shows consistent and 
convincing protein predictions on ESM-2 
 
CONCLUSION 

The most acceptable embedding for protein function prediction based on sequence effectively 
captures the intricate relationships within the protein's amino acid sequence, including evolutionary, 
structural, and functional patterns. Based on the study and experiment, three embedding models produce 
good training results ( accuracy > 99%, precision > 60%, and recall > 70%) and prediction results (hit rate 
> 79%). The ESM-2 embedding model, trained explicitly on large-scale protein sequence datasets, stands 
out for its ability to model long-range dependencies and complex interactions within the sequence. ESM-2 
embedding model generates high-dimensional embeddings that accurately reflect the biological nuances of 
proteins, making them particularly effective for function prediction tasks ( the training accuracy above 99% 
and average prediction hit rate 93.33%). By utilizing embeddings tailored to protein sequences and trained 
on vast evolutionary data, researchers can achieve more accurate and reliable predictions, ultimately 
advancing our understanding of protein functions and their implications in biology and medicine. 

Future work in protein function prediction based on the sequence will likely focus on enhancing the 
accuracy and scalability of protein embeddings by integrating multimodal data and more advanced deep 
learning architectures. One promising direction is incorporating structural and experimental data alongside 
sequence information to create richer embeddings that capture the linear sequence and the three-
dimensional conformation of proteins. Additionally, exploring more sophisticated transformer models or 
hybrid approaches that combine evolutionary information with functional annotations could improve 
predictive power. Training models on even larger and more diverse protein datasets, possibly incorporating 
unsupervised or self-supervised learning methods, will be crucial as computational resources expand. 
Furthermore, fine-tuning these models for specific protein families or functions and making them more 
interpretable will be essential for applying them in practical biological and clinical settings, such as drug 
discovery and personalized medicine. 
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