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ABSTRACT 

 

This study evaluates the performance of different classification methods in classifying healthy individuals 

and stroke patients. The hand gesture variations of the subjects were also analyzed based on electromyography 

(EMG) signals. Several classification methods were tested in this analysis to find out which method had the most 

suitable performance. The results showed that Decision Tree and Naive Bayes classifiers achieved the highest 

performance in classifying EMG signals from healthy individuals and stroke patients, with both methods showing 

high accuracy, precision, recall, and F1 score. Specifically, Decision Tree excelled in overall accuracy and recall, 

while Naive Bayes showed superior precision. For hand gesture recognition, SVM, KNN, and Random Forest 

classifiers showed similarly high performance, achieving accuracy, precision, recall, and F1 score above 82%. 

Naive Bayes also performed well, especially in precision, while Decision Tree performed poorly compared to 

other methods. This insight can form the basis for the development of more effective and personalized 

rehabilitation systems for stroke patients, by utilizing reliable and accurate EMG signal classification. 
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INTRODUCTION 

 

An electromyogram is a technique for 

evaluating and recording contraction and 

relaxation activity of arm/leg muscle tissue. The 

electrical activities produced by skeletal muscles 

constitute the fundamental Electromyography 

(EMG) signal. Because EMG signals arise from 

neuromuscular activity, they can be used to 

diagnose several medical conditions caused by 

neurological and muscle disorders [1]. This 

allows for the efficient examination of specific 

muscle activation and has consequently been 

applied in various medical investigations, 

including orthopedics, surgical procedures, 

nervous system research, and gait and postural 

assessments  [2], [3], [4], [5]. In recent years, 

EMG signal analysis has gained significant 

attention, particularly in the context of 

differentiating between healthy individuals and 

patients with neurological disorders, such as 

stroke. Stroke is a disease with the third highest 

rate of death and disability in the world [6]. 

Stroke often results in impaired motor control 

and reduced ability to perform daily activities. 

Understanding the differences in EMG signals 

between healthy individuals and stroke patients 

is essential for developing effective 

rehabilitation strategies and assistive 

technologies. Analysis of differences in hand or 

foot muscle gestures based on EMG signals is 

also widely used for medical purposes or control 

systems. 

Research on EMG signal analysis has 

been widely conducted with various applications 

[7], [8], [9], [10]. Cao et al [7]  analyzed the 

detection system algorithm to classify hand 

gestures based on EMG signals. The experiment 

was conducted using the OPENBCI method to 

collect data. Four features were extracted from 

each part of the movement activity and generated 

a feature vector for classification. In the 

classification process, researchers conducted a 

comparison between the K-nearest-neighbors 

(KNN) and support vector machine (SVM) 

methods using a relatively small sample size. 

The comparison focused specifically on 

classification methods deemed appropriate for 

detecting hand gestures, utilizing the KNN and 

SVM techniques. The experimental findings 
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revealed that the SVM algorithm achieved an 

average recognition rate that was 1.25% higher 

than that of KNN and completed the task 2.03 

seconds faster than KNN. Another researcher, 

Khan [8] conducted a study to classify six types 

of eye movements from extraocular muscle 

signals using Fourier–Bessel series-based 

empirical wavelet transform (FBSE-EWT) with 

time and frequency domain (TAFD) features. A 

combined approach was employed to choose 

significant FBIMFs, followed by feature 

extraction based on statistical and signal 

complexity measures. Additionally, a 

metaheuristic optimization algorithm was 

applied to minimize the feature space 

dimensionality. The discriminative capability of 

the reduced feature set was confirmed using the 

Kruskal–Wallis statistical test. For 

classification, a multiclass support vector 

machine (MSVM) was utilized. The 

combination of selected methods produces good 

performance with an accuracy of approximately 

99%. The development of an EMG signal 

classification algorithm has also been carried out 

by Azhiri et al [9]. Researchers compared the 

KNN and SVM methods with the Extreme Value 

Machine (EVM) method. The Autoregressive 

(AR) reflection coefficient was used to train a set 

of classification data. The results showed that the 

SVM method had better accuracy than the 

conventional method. However, the accuracy of 

the hand gesture detection that was tested still 

requires further development, especially in terms 

of recognition accuracy. Other researchers [10] 

conducted EMG signal analysis for the design 

and validation of an accurate automated 

diagnostic system to classify intramuscular 

electromyography (iEMG) signals into healthy, 

myopathy, or neuropathy categories to aid in the 

diagnosis of neuromuscular diseases. The 

MLPNN-BMMV classifier was tested with 250 

iEMG signals from three categories.  

Based on the research that has been done 

previously related to EMG signal analysis, it can 

be concluded that the development of an EMG 

signal detection system, especially for 

applications on hand movements of healthy 

individuals and stroke patients, still needs a lot 

of development. Some algorithms that have been 

developed do produce increased accuracy 

compared to conventional methods, but this is 

still not enough to be applied in the very crucial 

medical field. In addition, the use of EMG 

signals to help the rehabilitation process of 

stroke patients directly has not been widely used. 

Seeing this, the analysis of the EMG signal 

detection system algorithm that is focused on 

helping the rehabilitation process of stroke 

patients is very important. The results of the 

analysis of the performance of the detection 

algorithm can be used to monitor the 

development of patient hand movements during 

the rehabilitation process using physiotherapy 

methods.  

 

METHODS 

A. Dataset 

The dataset used in the performance 

analysis of the EMG signal classification method 

comes from Kaggle. The dataset preparation 

process itself begins with the collection of raw 

EMG signals from electrodes placed on the 

relevant muscles. After that, the signals go 

through a pre-processing stage to reduce 

unwanted noise and artifacts. The dataset used 

for the analysis of EMG signals from healthy 

individuals and stroke patients is the MUSED-I 

Surface Electromyography (sEMG) Dataset. The 

dataset includes information from 11 healthy 

subjects and 2 stroke patients, with a duration of 

about two months. In this study, ten healthy 

subjects (without a history of upper limb 

pathology) and two upper limb stroke patients 

participated. The dataset used consists of raw 

surface electromyography (sEMG) signals 

collected for six types of movements (wrist 

flexion, wrist extension, hand closing, wrist 

radial deviation, wrist ulnar deviation, and 

resting position) using the Myo armband. All 

eight channels of the Myo armband were used 

for data acquisition [11]. Fig. 1 shows the 

characteristics of the EMG signal resulting from 

recording using an 8-channel sensor. 
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Figure 1. EMG signal with 8 channels 

In addition, for hand gesture recognition 

classification, this study also used a dataset from 

the UCI Machine Learning Repository. The 

EMG signal dataset was obtained from 36 

subjects performing a series of static hand 

movements. Each subject performed two series, 

each consisting of six basic movements. Each 

movement was performed for 3 seconds with a 

3-second break between movements. The 

variations of hand movements in this dataset 

include hand at rest, hand clenched in a fist, wrist 

flexion, wrist extension, radial deviations, and 

ulnar deviations [12]. A complete description of 

the dataset used can be seen in Table 1 below. 

Table 1. Details of the EMG signal dataset used 

Dataset Number of 

Subjects 

Number of 

Classes 

MUSED-I 

Surface 

Electromyograph

y (sEMG) 

11 healthy 

subjects 

6 types of 

movements 

and 2 health 

conditions 

2 stroke 

patients 

 

UCI Machine 

Learning 

Repository 

36 healthy 

subjects 

6 types of 

movements 

B. Classification 

The EMG signal classification system 

basically works by analyzing EMG signals based 

on the characteristics of human hand muscle 

movements. The EMG signal classification 

process has several stages. The first step is initial 

processing which aims to standardize EMG 

signal data. Furthermore, important features of 

the EMG signal are extracted using feature 

aggregation techniques that include minimum 

value, maximum value, integral function, root 

mean square, absolute value, wavelength, and 

skewness. After the features are extracted, they 

are then used as input for the classification 

algorithm. The final step is testing by dividing 

the dataset into training data and testing data 

with a certain ratio. The stages of the EMG 

signal classification process are shown in Fig. 2 

below. 

 
Figure 2. Stages of EMG Signal Classification 

System 

Several classification algorithms tested include 

Support Vector Machine (SVM), K-Nearest 

Neighbour (KNN), Random Forest (RF), 

Decision Tree (DT), and Naive Bayes (NB). 

Each algorithm has a unique approach and 

characteristics in handling EMG signal feature 

data. SVM, for example, is known for its ability 

to handle classification problems with maximum 

margin, while KNN uses a distance-based 

approach to determine the class of the tested 

sample. RF and DT use a tree-based approach to 



Winursito, A; Arifin, F; Muslikhin; Artanto, H; Caryn, F.H., Performance Analysis of EMG Signal Classification ... 267 

 

build a classification model, while Naive Bayes 

uses probability to determine the class based on 

the distribution of features. The results of this 

classification process are used to recognize and 

distinguish hand movements performed, both in 

healthy individuals and in stroke patients. A 

comparative analysis of the performance of each 

classification method was carried out to 

determine the most effective and accurate 

algorithm in the context of EMG signal-based 

hand movement detection. Several parameters 

used in the comparison of the performance of the 

classification methods are the level of accuracy, 

precision, recall, and F1 Score. 

C. Support Vector Machine (SVM) 

SVM is one of the classification methods 

used in EMG signal classification. SVM is a 

machine learning method that works by finding 

the optimal hyperplane that can separate data 

into two or more classes. This hyperplane is 

positioned equidistant between the two classes, 

with the margin being the distance to the nearest 

data point from each class. The data points 

located exactly at this margin distance from the 

hyperplane are referred to as support vectors 

[13]. Equation (1) is the hyperplane found in the 

SVM algorithm, with 𝑤⃗⃗  is the weighting vector, 

𝑥  is the input vector and b is the intercept or bias. 

𝑤⃗⃗  . 𝑥  + b = 0  (1) 

In the context of hand gesture recognition, 

features extracted from EMG signals are used as 

input to an SVM, with the aim of classifying the 

type of hand gesture performed by the subject. 

Training data is used to build an SVM model, 

where the algorithm will determine the optimal 

hyperplane that separates the hand gesture 

classes. SVM can work with either a linear or 

non-linear kernel, depending on the complexity 

of the data. A linear kernel is used if the data can 

be separated by a straight line in the feature 

space, while a non-linear kernel such as RBF 

(Radial Basis Function) is used if the data is 

more complex and cannot be separated linearly. 

Once the SVM model is trained, its performance 

is evaluated using test data. The results of the 

SVM model are then compared with other 

classification methods to determine the 

effectiveness and accuracy of recognizing hand 

gestures based on EMG signals. An illustration 

of the formation of a hyperplane in SVM is 

shown in Fig. 3. 

 
Figure 3. Hyperplane SVM illustration [13] 

D. K-Nearest Neighbors (KNN) 

KNN is a non-parametric, instance-based 

learning algorithm that classifies a sample by 

examining the K nearest neighbors within the 

feature space. These features are obtained from 

EMG signals that have gone through a feature 

extraction process, covering various aspects 

such as temporal, frequency, and time-

frequency. The process of using KNN begins by 

determining the value of K, which is the number 

of nearest neighbors that will be considered to 

determine the class of the test sample. The 

selection of the K value is very important 

because it can affect the accuracy of the model. 

After determining the value of K, the KNN 

algorithm calculates the distance between the 

test sample and all data in the training set. Some 

commonly used distance metrics include 

Euclidean, Manhattan, and Minkowski 

distances. The Euclidean distance is the most 

commonly used, which measures the straight-

line distance between two points in a 

multidimensional space. KNN then sorts all 

training data based on the nearest distance and 

selects the K nearest neighbors. The class of the 

test sample is determined by the majority class 

among the K nearest neighbors. One of the 

methods that is widely used for the process of 

calculating neighbor distances is using the 

Euclidean algorithm (2), where a =a1,a2, ... ,an, 
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and b = b1,b2, ...,bn represents the n attribute 

values of the two records [14]. 

𝑒𝑢𝑐 =

 √((𝑎1 − 𝑏1) 
2 + ⋯+ 𝑎𝑛 − 𝑏𝑛)2  (2) 

E. Random Forest (RF) 

This method is known for its ability to 

handle varied and complex data by providing 

more stable and accurate results compared to a 

single decision tree model. Many researchers 

have conducted research related to the 

effectiveness and development of the Random 

Forest algorithm [15], [16], [17], [18]. Random 

forest (RF) regression is widely regarded as an 

effective tool for high-dimensional data analysis. 

Nevertheless, its efficacy may be compromised 

in sparse contexts due to the presence of weak 

predictors and the necessity for a preliminary 

dimensionality reduction (targeting) step [16]. 

Random forest is an ensemble classification 

method that combines the results of multiple 

decision trees by taking a vote from each tree's 

prediction [17]. The process of implementing 

Random Forest begins with the extraction of 

features from the EMG signals, which are then 

used as input to build a large number of decision 

trees, known as a “forest.” Each tree in the forest 

is trained using a different subset of the training 

data through a bootstrap sampling technique, 

where a portion of the data is randomly selected 

with replacement. This creates diversity among 

the trees and reduces the risk of overfitting. 

When forming each tree, only a random subset 

of features is considered for splitting at each 

node. This approach helps reduce the correlation 

between trees and enhances the model's overall 

accuracy. At testing time, each tree in the forest 

provides a class prediction for the test sample. 

Random Forest then combines these predictions 

with a majority voting method to determine the 

final class of the sample. The mechanism of the 

random forest algorithm is shown in Fig. 4. 

 
Figure 4. Random Forest Algorithm mechanism 

[19] 

F. Decision Tree (DT) 

Decision Tree is a learning model that 

uses a tree-like structure to make decisions based 

on input features, with each branch representing 

a choice between alternatives and each leaf 

representing a final decision or classification. 

Decision tree belongs to the simplest and most 

intuitive machine learning algorithms.  Easy 

representation, low cost, and high quality make 

decision trees one of data science's most 

powerful and popular approaches [20]. Many 

studies have analysed the effectiveness and 

development of decision tree classification 

algorithms [18], [20], [21], [22], [23], [24]. The 

process of implementing a Decision Tree begins 

with the extraction of features from the EMG 

signal, which are then used to construct a 

decision tree. Each node in the tree represents a 

feature that is selected as the basis for the split, 

and each branch represents a possible value or 

range of values that the feature can take. This 

process of feature selection and node division is 

governed by an algorithm that aims to maximize 

the information gained or minimize impurities, 

such as by using metrics such as the Gini index 

or entropy (in the case of using the Information 

Gain method). Feature selection at each node is 

done by considering the features that are most 

effective in separating the data into different 

classes. The Decision Tree algorithm continues 

to divide the dataset at each node based on the 

values of the selected features until no more 

significant divisions can be made or until the 

node reaches the minimum amount of data that 

can be grouped as shown in Fig. 5. 
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Figure 5. A simple decision tree classifier with 

4 features [24] 

G. Naive Bayes 

Naïve Bayes model is widely used in 

classification because it is simple, efficient, and 

easy to understand [25]. Naive Bayes is a simple 

yet effective classification method, based on 

Bayes' theorem with the assumption of "naive" 

or independence between features. According to 

the Bayesian decision theorem, a Bayesian 

classifier predicts the test instance as the class 

with the highest membership probability. This 

means that learning a Bayesian classifier 

involves estimating the prior and posterior 

distributions of the training data [26]. In the 

Bayesian classification framework, equation (3) 

defines the posterior probability [27]. 

𝑃(𝐶|𝑋) =  
𝑃(𝑋|𝐶)∗𝑃(𝐶)    

𝑃(𝑋)
 (3) 

with the variable 𝑃(𝐶|𝑋) is the probability of 

class C given feature X (posterior probability), 

𝑃(𝑋|𝐶) is the probability of feature X given class 

C (likelihood), P(C) is the probability of class C 

(prior probability) and P(X) is the probability of 

feature X (marginal probability). This method 

assumes that all features are independent of each 

other given the class. Thus equation (3) can be 

changed into a simpler equation (4). 

𝑃(𝐶|𝑋)  ∝ 𝑃(𝐶)Π𝑖=1
𝑛 𝑃(𝑥𝑖|𝐶) (4)  

with 𝑥𝑖 is the i-th feature of the feature vector X. 

 

RESULT AND DISCUSSION 

 

The analysis process is carried out by 

testing the performance of several methods in 

classifying healthy people and stroke patients 

and recognizing subject hand gestures based on 

EMG signals. The analysis uses a 

comprehensive EMG signal dataset and various 

analysis methods, including machine learning 

and signal processing techniques, to assess the 

ability of each method to classify the appropriate 

class. The results of the analysis can be used to 

provide in-depth insights into the effectiveness 

of different approaches and provide guidance for 

the development of more effective rehabilitation 

systems based on EMG signals. This section 

includes a comparison of the results between the 

methods used, a discussion of the strengths and 

weaknesses of each method (accuracy, precision, 

recall, F1 Score), and practical implications in 

the context of stroke rehabilitation.  

A. Classification of EMG signals of healthy 

and stroke patient 

The characteristics of EMG signals 

produced by healthy individuals and stroke 

patients have significant differences. In healthy 

individuals, EMG signals tend to be more 

regular and consistent, reflecting better motor 

control and effective muscle coordination. 

Meanwhile, in stroke patients, EMG signals 

often show irregular patterns and larger 

amplitude fluctuations, caused by neurological 

damage that disrupts nerve signal transmission 

and muscle control. These differences reflect 

impaired motor function due to stroke, leading to 

less stable and uncoordinated movements. The 

differences in EMG signal characteristics 

between healthy individuals and stroke patients 

are shown in Fig. 6 and Fig. 7 below. 
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Figure 6. EMG signals of healthy people 

 

 
Figure 7. EMG signals of stroke patients 

 

Based on the characteristics of the EMG signal 

in Fig. 6 and Fig. 7, the most dominant difference 

is related to the signal amplitude value between 

healthy individuals and stroke patients. In 

healthy individuals, the signal amplitude on 

channel 1 reaches an average value of 40, while 

in stroke patients it only has an average value of 

10. Likewise, in other channels that have quite 

significant differences in amplitude values 

between healthy individuals and stroke patients. 

To find out the characteristics in more depth, the 

EMG signal is then subjected to a data extraction 

process with feature aggregation. The data from 

the feature extraction results are then inputted 

into several classification algorithms to carry out 

the classification process between EMG signals 

in healthy individuals and stroke patients. The 

performance results of several classification 

methods are shown in Table 2. 

 

Table 2. Performance of classification methods on 

detecting EMG signals of healthy individuals and 

stroke patients 
Model 

Classifier 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

SVM 76.47 79.58 76.47 76.97 

KNN 76.47 85.88 76.47 76.80 
Random 

Forest 

82.35 82.16 82.35 81.93 

Decision 

Tree 

88.24 88.24 88.24 88.24 

Naïve 

Bayes 

88.24 90.05 88.24 87.55 

The performance of the classification method 

was tested with several parameters, namely 

accuracy, precision, recall, and F1 score. Based 

on Table 2 above, it can be seen that all methods 

tested have quite good performance with 

accuracy, precision, recall, and F1 score values 

above 75%. To see a clearer comparison, it is 

shown in Fig. 8 below. 
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Figure 8. Comparison of classifier model performance based on several parameters 

Based on the comparison of the 

performance of the classification methods shown 

in Fig. 8, it can be seen that the Decision tree and 

Naive Bayes methods have the best performance 

compared to other methods. The Decision tree 

and Naive Bayes methods have the highest 

percentage of accuracy, precision, recall, and F1 

score in classifying EMG signals of healthy 

individuals and stroke patients, compared to 

other methods. The difference between the 

Decision tree and Naive Bayes methods lies only 

in the level of precision with a better value being 

Naive Bayes and in the F1 score with a better 

value in the Decision tree method. 

B. Hand Gesture Recognition 

The next analysis process is related to 

hand gesture recognition. Hand gesture 

recognition is needed in the development of a 

stroke patient rehabilitation monitoring system. 

The dataset used consists of 36 subjects while 

they performed a series of static hand gestures. 

The subject performs two series, each of which 

consists of six basic gestures (hand at rest, hand 

clenched in a fist, wrist flexion, wrist extension, 

radial deviations, and ulnar deviations). Each 

gesture was performed for 3 seconds with a 

pause of 3 seconds between gestures. The 

performance of several classification methods 

was tested to determine the most optimal 

method. The feature extraction process was 

carried out first using feature aggregation. Table 

3 shows the results of hand gesture classification 

with several classification methods that were 

tested. 

Table 3. Comparison of classifier performance on 

hand gesture detection 
Model 

Classifier 

Accuracy Precision Recall F1 

Score 

SVM 82.81 82.73 82.81 82.47 

KNN 82.81 83.58 82.81 83.06 
Random 

Forest 

82.81 83.97 82.81 83.16 

Decision 

Tree 

67.19 73.50 67.19 68.70 

Naïve 

Bayes 

79.69 84.14 79.69 80.72 

 

Based on the test results data shown in Table 3, 

it can be seen that almost all classification 

methods have good performance. The decision 

tree method has poor performance with the 

lowest value on all tested parameters compared 

to other methods. A comparison of classification 

method performance related to hand gesture 

recognition is shown in Fig. 9 below. 
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Figure 9. Comparison of classifier model performance 

Based on the graph shown in Fig. 3, it can be 

seen that the SVM, KNN, Random Forest, and 

Naive Bayes methods have similar performance. 

At the accuracy level, the SVM, KNN, and 

Random forest algorithms have the same 

percentage value, which is 82.81%. At the 

precision level, the Naive Bayes algorithm has 

the best performance, with a percentage value of 

84.14%. As for Recall, the SVM, KNN, and 

Random forest algorithms again have the same 

performance with a percentage value of 82.81%. 

In the f1 Score parameter, the Random Forest 

algorithm has the best performance with a 

percentage value of 83.16%. 

 

CONCLUSION 

 

Comprehensive datasets and the 

application of machine learning techniques 

allow for detailed evaluation of the performance 

of various classifiers. Based on the analysis 

results, there are differences in EMG signals 

from healthy individuals and stroke patients. The 

most dominant difference is related to the signal 

amplitude value between healthy individuals and 

stroke patients. In healthy individuals, the signal 

amplitude on all channels has a high value, while 

in stroke patients the average signal amplitude 

value is low. In the classification of EMG signals 

from healthy individuals and stroke patients, it 

was observed that the Decision Tree and Naive 

Bayes classifiers performed the best, with both 

achieving high accuracy, precision, recall, and 

F1 scores. Decision Tree had the highest overall 

accuracy and recall, while Naive Bayes showed 

superior precision. This indicates that both 

methods are very effective in distinguishing 

EMG signals from healthy individuals from 

stroke patients, making them suitable for 

application in stroke rehabilitation systems.  

For hand gesture recognition, the results 

showed that the SVM, KNN, and Random Forest 

classifiers had similar high performance, with 

accuracy, precision, recall, and F1 scores all 

above 82%. Naive Bayes also performed well, 

especially in terms of precision. However, the 

Decision Tree classifier performed worse than 

the other methods. These findings suggest that 

SVM, KNN, and Random Forest are powerful 

methods for recognizing hand movements and 

can be effectively applied in a monitoring system 

for stroke rehabilitation. In the process of stroke 

patient rehabilitation, certain hand movements 

need to be monitored to observe the development 

of the training process over time. An appropriate 

classification algorithm will be able to assist the 
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monitoring system in observing the optimal 

development of the patient's muscles. Overall, 

this study provides valuable insights into the 

strengths and weaknesses of various 

classification methods in the context of EMG 

signal analysis. These findings support the 

development of a more effective and 

personalized rehabilitation system based on 

reliable and accurate EMG signal classification. 
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