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This paper fills an essential gap in applying cognitive load theory in 

teaching computer programming within vocational settings. It is an 

important area to consider for improving students' learning processes 

who intend to enter the rapidly changing technology sector. This study 

assessed the distinct impacts of the instructional paradigms, 

specifically Example-Problem-Based Learning (EPBL) and Problem-

Based Learning (PBL), on students’ cognitive loads upon framing an 

iterative structure lesson on computer programming. Vocational 

programming education is chosen for this purpose because vocational 

education faces unique challenges in integrating practical skills 

development with theoretical understanding, and programming tasks 

involve high cognitive demands. In a quasi-experimental design, 68 

vocational high school students were assigned to an EPBL (n = 34) 

and a PBL (n = 34) group. The measurement of ICL was 

operationalized by RPI, the ECL by ME, and the GCL by LO. The 

relationship among the various components of the cognitive load was 

tested using the Spearman correlation test. There are significant 

differences in the profile of cognitive load between the two groups: the 

EPBL group was always associated with the lower ECL and higher 

GCL. In other words, the present study is original because it 

systematically compares EPBL with PBL in the context of vocational 

programming education and provides empirical evidence based on 

instructional design decisions. These findings suggest a further 

refinement of the CLT within domain-specific contexts and practical 

guidelines for optimizing instructional strategies in computer 

programming education in vocational schools. 
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INTRODUCTION  

Cognitive Load Theory (CLT) has emerged as a pivotal framework in educational psychology, 

offering profound insights into the intricate processes of human cognition and learning. Developed by 

Sweller [1], [2], CLT posits that the human cognitive architecture, particularly working memory, has 

limited capacity when dealing with novel information. This limitation necessitates careful consideration 

in instructional design to optimize learning outcomes. Over the past three decades, CLT has significantly 

influenced educational research and practice, providing a robust theoretical foundation for 

understanding the cognitive demands placed on learners during complex learning tasks [3]. The 
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fundamental premise of CLT is that cognitive load can be categorized into three distinct types: intrinsic, 

extraneous, and germane. Intrinsic cognitive load is inherent to the complexity of the learning material 

itself, extraneous cognitive load is imposed by suboptimal instructional design, and germane cognitive 

load represents the cognitive resources allocated to schema construction and automation [2], [4]. This 

triarchic model has been instrumental in guiding instructional designers and educators to develop 

effective learning strategies that minimize extraneous load while optimizing germane load, thereby 

enhancing learning efficiency and effectiveness. 

Recent advancements in CLT research have expanded its application to various educational 

domains, including mathematics, science, and language learning. However, there remains a significant 

gap in the literature regarding applying CLT principles to computer programming education, particularly 

in vocational settings. Computer programming, characterized by its high-element interactivity and 

abstract nature, presents unique cognitive challenges to learners. The complexity of programming tasks, 

which often require simultaneous consideration of multiple concepts and procedures, aligns closely with 

the high intrinsic cognitive load described in CLT [1], [5]. The paucity of research on cognitive load in 

programming education is particularly pronounced in vocational education contexts. Vocational 

education, emphasizing practical skills and industry-relevant knowledge, presents a unique learning 

environment that warrants specific investigation through the lens of CLT. Integrating CLT principles 

into vocational programming education can significantly enhance instructional effectiveness and student 

learning outcomes in this critical sector of education [6], [7], [8]. 

This study aims to extend the application of CLT to computer programming education in 

vocational settings by investigating the differential effects of two distinct instructional models: 

Example-Problem-Based Learning (EPBL) and Problem-Based Learning (PBL). While both models are 

rooted in constructivist learning theory, they diverge significantly in managing cognitive load. EPBL, 

which integrates worked examples with problem-solving tasks, is hypothesized to reduce extraneous 

cognitive load by providing scaffolding that aligns with CLT’s emphasis on schema acquisition and 

automation [2], [9], [10]. Conversely, PBL, with its focus on student-centered, inquiry-based learning 

through complex problem exploration, potentially imposes higher initial cognitive demands but may 

enhance germane load through active knowledge construction [10], [11], [12]. This comparative analysis 

aims to elucidate how these contrasting approaches differentially affect the three components of 

cognitive load—intrinsic, extraneous, and germane—as defined by CLT. By examining students’ 

cognitive load during an iterative structure lesson in computer programming, we seek to provide 

empirical evidence on how each model’s unique features interact with the cognitive architecture 

described in CLT. This investigation is particularly pertinent in vocational programming education, 

where the high-element interactivity of programming tasks presents significant challenges in cognitive 

load management. The theoretical differentiation between EPBL and PBL concerning CLT lies in their 

contrasting knowledge acquisition and skill development mechanisms. EPBL’s use of worked examples 

is theorized to reduce the extraneous load by providing explicit problem-solving schemas, thereby 

freeing cognitive resources for schema acquisition  [13]. In contrast, PBL’s emphasis on self-directed 

problem-solving may initially increase cognitive load but potentially leads to more robust schema 

construction through effortful processing [1], [14]. This study aims to empirically test these theoretical 

predictions, contributing to a more nuanced understanding of how different instructional strategies can 

be optimized to manage cognitive load in complex learning domains such as computer programming. 

It systematically compares the added value created by Example-Problem-Based Learning and 

Problem-Based Learning within the framework of vocational programming education. That is why it 

was conducted based on a robust theoretical framework: Cognitive Load Theory. This work is entirely 

based on core theoretical considerations that generate an appropriate need for more research in this 

domain. CLT in programming education, therefore, stands on a theoretically firm ground because there 

is a high element of interactivity in programming tasks. Sweller et al. take element interactivity as one 

of the critical determinants of intrinsic cognitive load [1], [2], [15]. Indeed, programming entails several 
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complicated syntaxes, logical structures, and abstract notions, typical of domains where element 

interactivity is sharp. We focus on expanding the CLT’s explanatory power in a highly interactive 

learning domain by examining how EPBL and PBL differentially affect intrinsic, extraneous, and 

germane cognitive load levels. Because EPBL and PBL differ in their approaches to managing cognitive 

load, the theoretical basis is rooted in their divergent approaches for comparing EPBL and PBL. EPBL, 

conceptually based on the worked example effect [9], [13], theoretically reduces extraneous load by 

providing explicit problem-solving schemas. On the other hand, PBL, conceptually rooted in 

constructivist learning theory [16], [17], [18], [19], [20], may facilitate germane load through active 

knowledge construction but could lead to higher initial cognitive demands. The theoretical tension 

provides practical empirical research in programming education where a balance is called for between 

scaffolding and its opposite methodology, discovery learning. Thirdly, CLT is theoretically important 

in focusing on vocational programming education; learners experience specific cognitive demands in 

this setting. It is complex to develop practical skills and understand the theory concerning those skills; 

it is strategically positioned that CLT should extend such complexity. According to the argument 

presented by Paas et al., CLT offers a framework to optimize the instructional design of complex 

learning settings, and therefore, its full relevance finds its place in meeting the challenge posed by 

vocational education [21]. Furthermore, our attention to recurrent structures in programming echoes 

CLT’s attention to the automated acquisition of schemas. Loop structures are central and demanding, 

making them fertile ground for investigating how different pedagogic treatments affect mental models’ 

development in programming. It resonates with the recent theoretical development in CLT, placing a 

premium on the role of long-term memory structures in the organization of cognitive load [2]. We also 

hope to further advance the CLT application in programming education and contribute to the ongoing 

theoretical debate about effective instructional design in complex high-element interactivity domains 

with empirical evidence regarding the differential effects of EPBL and PBL on cognitive load within 

this context. Theoretically, implications can be drawn from this on how cognitive load is managed in 

working with vocational education, particularly in preparing students for high cognitive demand and 

rapidly changing fields, such as computer programming. 

Furthermore, our research addresses the call for more domain-specific applications of CLT, as 

highlighted by recent reviews of the field. Leppink emphasized the need for CLT research to move 

beyond general principles and explore how cognitive load manifests in specific subject areas and 

learning contexts [22]. By focusing on vocational programming education, our study contributes to this 

growing body of domain-specific CLT research, potentially uncovering unique insights that may not be 

apparent in more general studies of cognitive load. The comparison between EPBL and PBL in our 

study also contributes to the ongoing debate about the efficacy of different instructional approaches in 

managing cognitive load. While worked examples, a key component of EPBL, effectively reduces 

extraneous cognitive load for novice learners [2], [6], [23], [24], the effectiveness of PBL in managing 

cognitive load remains controversial. Some studies suggest that PBL may impose high extraneous 

cognitive load, particularly for novice learners [1], while others argue that PBL can enhance germane 

cognitive load by promoting deep learning and schema construction  [25]. Our study aims to shed light 

on this debate within the specific context of vocational programming education. 

The methodological approach of our study, which operationalizes cognitive load through 

measures of Receiving and Processing Information (RPI), Mental Effort (ME), and Learning Outcomes 

(LO), provides a comprehensive assessment of the cognitive demands imposed by EPBL and PBL. This 

multifaceted approach to measuring cognitive load aligns with recent recommendations in the field for 

more nuanced and context-specific assessments of cognitive load [4], [8]. By examining the 

relationships between these different aspects of cognitive load, our study aims to provide a more holistic 

understanding of how EPBL and PBL affect students’ cognitive processes during programming 

instruction. In conclusion, our research addresses a significant gap in the literature by extending CLT to 

the domain of vocational programming education and comparing the effectiveness of EPBL and PBL in 
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managing cognitive load. This study contributes to the theoretical understanding of cognitive load in 

programming education and has practical implications for instructional design in vocational settings. By 

providing empirical evidence on the cognitive effects of different instructional approaches, our research 

aims to inform evidence-based practices in programming education, ultimately enhancing students’ 

learning experiences and outcomes in vocational programs. 

METHODS 

This study employed a quasi-experimental design with a quantitative approach to investigate the 

differential effects of Example-Problem-Based Learning (EPBL) and Problem-Based Learning (PBL) 

instructional models on students’ cognitive load during an iterative structure lesson in computer 

programming. The quasi-experimental nature of the design, which endorses the use of quantitative 

approaches, opens the possibility of directly comparing EPBL and PBL instructional models within 

strictly controlled premises. Two clear groups, an experimental group and a controlled group, further 

allow findings to be teased apart into the effects of each model on the students’ cognitive load. Moreover, 

this study’s operationalization of cognitive load uses multiple indices, such as RPI and ME, and allows 

detailed insight into complex cognitive processes while learning computer programming, as recently 

recommended regarding measurement issues in cognitive load theory. The research was conducted at a 

vocational high school in Malang, Indonesia, involving 68 students enrolled in a computer programming 

course. The participants were divided into two groups: an experimental group (n=34) that received 

instruction using the EPBL model and a control group (n=34) taught using the PBL model. Both groups 

underwent the exact duration of instruction, with the critical difference being that the specific steps of 

the instructional process aligned with each model.  

 

Research Variables 

The study operationalized cognitive load through three distinct measures, each corresponding to 

a specific type of cognitive load defined by Cognitive Load Theory (CLT). Intrinsic Cognitive Load 

(ICL) was measured through students’ ability to receive and process information (RPI). It was assessed 

using a set of nine essay questions designed to evaluate task complexity across three categories: 

information component, information integration, and information application. The complexity of these 

questions was carefully calibrated to trigger high intrinsic processing requirements, as suggested by [2]. 

Extraneous Cognitive Load (ECL) was quantified through students’ mental effort (ME), utilizing a 

Subjective Rating Scale questionnaire. This instrument was designed to gauge students’ mental effort 

in comprehending the provided material. The questionnaire employed a four-point Likert scale ranging 

from Very Low to Very High, allowing for a nuanced assessment of perceived cognitive demand. This 

approach aligns with recent recommendations in cognitive load research, emphasizing the importance 

of subjective measures in capturing the experiential aspects of cognitive load [4]. Germane Cognitive 

Load (GCL) was evaluated through students’ learning outcomes (LO) and assessed via a multiple-choice 

test. The test questions were developed based on four key indicators: (1) understanding and 

distinguishing various forms of looping in PHP, (2) explaining the elements and structure of looping 

systems in PHP code syntax, (3) analyzing displayed looping systems with various forms, and (4) 

completing displayed code syntax with various looping forms. This comprehensive assessment approach 

thoroughly evaluates students’ ability to apply and integrate the learned concepts, reflecting the germane 

cognitive load associated with schema construction and automation [21]. All research instruments were 

standardized to a 100-point scale to ensure comparability across measures. This standardization 

facilitates more straightforward comparisons between different aspects of cognitive load and allows for 

more robust statistical analyses. The data collection process was meticulously planned and executed to 

minimize potential confounds and ensure the reliability of the gathered information. 
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Preliminary Test: Normality Test, Homogeneity Test, and Linearity Test 

Before conducting the primary analyses, we performed a series of classical assumption tests to 

verify the suitability of the data for parametric statistical analyses. These tests included the following: 

(1) normality test, which assesses whether the data follows a normal distribution, which is a fundamental 

assumption for many statistical tests; We employed the Shapiro-Wilk test due to its superior power for 

small to medium-sized samples; (2) homogeneity test: to evaluate the equality of variances across 

groups, ensuring that the variability in scores is similar between the EPBL and PBL groups. Levene’s 

test was utilized for this purpose, and (3) the linearity test was used to examine the linear relationship 

between variables, which is particularly important for the correlation analyses planned. It was assessed 

through visual inspection of scatterplots and formal statistical tests. These preliminary tests are crucial 

for determining the appropriate statistical methods for subsequent analyses and ensuring the validity of 

the study’s conclusions. The primary analytical approach involved both descriptive and inferential 

statistics. Descriptive statistics were computed to provide an overview of the cognitive load profiles for 

each instructional model, including measures of central tendency and dispersion for RPI, ME, and LO 

scores. To investigate the relationships between different types of cognitive load, we conducted 

correlation tests examining three key relationships: (1) ME and RPI, (2) ME and LO, and (3) RPI and 

LO. These correlational analyses were performed separately for each instructional model to allow for a 

comparison of the cognitive load dynamics between EPBL and PBL approaches. 

Correlation Analysis 

The strength and nature of these relationships were interpreted based on the correlation 

coefficients (r) obtained, with values between 0.00-0.19 considered very weak, 0.20-0.39 weak, 0.40-

0.59 moderate, 0.60-0.79 strong, and 0.80-1.0 very strong. The direction of the relationship (positive or 

negative) was also noted to understand whether increases in one type of cognitive load were associated 

with increases or decreases in another. In addition to the quantitative analyses, we incorporated a 

qualitative component to our methodology to provide a more nuanced understanding of the cognitive 

processes underlying the observed cognitive load patterns. It involved carefully examining students’ 

responses to the essay questions and their problem-solving approaches in the multiple-choice tests. This 

mixed-methods approach allows for a richer interpretation of the quantitative findings and provides 

valuable insights into the cognitive strategies employed by students under different instructional models. 

RESULT AND DISCUSSION 

The present study aimed to elucidate the differential effects of Example-Problem-Based Learning 

(EPBL) and Problem-Based Learning (PBL) instructional models on students’ cognitive load during an 

iterative structure lesson in computer programming. The results provide compelling evidence for the 

efficacy of the EPBL model in managing cognitive load and enhancing learning outcomes in the context 

of vocational programming education. We conducted additional statistical analyses to provide a more 

comprehensive view of the data distribution.  

Descriptive Statistics 

The descriptive statistics provide additional context for interpreting the cognitive load profiles of 

students in each instructional model. The lower standard deviation in ME scores for the EPBL group 

(SD = 7.62) compared to the PBL group (SD = 8.34) suggests that the EPBL approach may lead to more 

consistent levels of mental effort across students. This consistency could be attributed to the structured 

nature of worked examples, which may help standardize the cognitive demands placed on learners 

(Renkl, 2017). In the EPBL model, students demonstrated a mean RPI score of 76.04, indicating high 

information reception and processing. It suggests that the work examples provided in the EPBL 

approach effectively facilitated students’ understanding and internalization of the programming 
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concepts. Concurrently, the mean ME score for the EPBL group was notably low at 46.54, implying that 

students experienced reduced extraneous cognitive load while engaging with the learning material. It 

aligns with the cognitive load theory principle that well-designed instructional interventions can 

minimize extraneous load, freeing cognitive resources for germane processing [2]. The mean LO score 

of 71.40 for the EPBL group further corroborates the effectiveness of this instructional approach in 

promoting learning outcomes. Table 1 presents the descriptive statistics for each cognitive load 

component across both instructional models. 

Table 1. Descriptive Statistics of Cognitive Load Components 

Model Measure Mean Median SD Min Max 

EPBL RPI 76.04 77.50 8.91 55 90  
ME 46.54 45.00 7.62 30 65  
LO 71.40 72.50 9.18 50 90 

PBL RPI 59.19 60.00 9.76 40 80  
ME 64.48 65.00 8.34 45 80  
LO 60.22 60.00 8.97 40 80 

In contrast, the PBL model yielded markedly different results. Students in this group exhibited a 

lower mean RPI score of 59.19, suggesting they encountered greater difficulties in receiving and 

processing the programming information without the scaffolding provided by worked examples. The 

mean ME score for the PBL group was substantially higher at 64.48, indicating that students experienced 

increased extraneous cognitive load during problem-solving. The heightened mental effort may be 

attributed to the cognitive demands of simultaneously grappling with novel concepts and problem-

solving strategies without the benefit of worked examples [15]. Consequently, the mean LO score for 

the PBL group was lower at 60.22, reflecting the potential impact of increased cognitive load on learning 

outcomes.  

 

Analysis of the Results 

To provide a more nuanced understanding of the relationship between different aspects of 

cognitive load, we conducted correlation analyses for both instructional models. Table 2(a) presents the 

results of these analyses, offering insights into the interplay between ME, RPI, and LO. In the EPBL 

model, the correlation between ME and RPI yielded an r-value of 0.142, indicating a weak negative 

relationship. It suggests that as students’ mental effort decreased, their ability to receive and process 

information slightly improved. This finding aligns with the cognitive load theory principle that reducing 

extraneous load can facilitate more efficient information processing [15]. The positive correlation (r = 

0.339) between ME and LO in the EPBL model suggests that students who invested more mental effort 

tended to achieve better learning outcomes, possibly reflecting the germane cognitive load associated 

with meaningful learning. The positive correlation (r = 0.258) between RPI and LO further supports the 

effectiveness of the EPBL approach, indicating that students who were better able to receive and process 

information also demonstrated improved learning outcomes.  

Table 2. Correlation Analysis of Cognitive Load Components and Independent Samples t-test Results 

(a) Correlation Analysis  (b) t-test Results 

Model Cognitive Load 

Relationship 

r value Relationship 

Type 

 Measure t-value df p-value Cohen’s d 

EPBL ME - RPI 0.142 Negative  RPI 7.621 66 <0.001 1.847  
ME - LO 0.339 Positive  ME -9.342 66 <0.001 -2.263  
RPI - LO 0.258 Positive  LO 5.128 66 <0.001 1.242 

PBL ME - RPI 0.013 Positive        
ME - LO 0.290 Positive        
RPI - LO 0.309 Negative       
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The PBL model, however, exhibited different correlation patterns. The relationship between ME 

and RPI was negligibly positive (r = 0.013), suggesting no significant association between mental effort 

and information processing in this instructional approach. The positive correlation (r = 0.290) between 

ME and LO in the PBL model was similar to that observed in the EPBL model, indicating that increased 

mental effort was associated with better learning outcomes. However, the negative correlation (r = -

0.309) between RPI and LO in the PBL model is noteworthy, as it suggests that students who reported 

higher levels of information reception and processing tended to achieve lower learning outcomes. This 

counterintuitive finding warrants further investigation and may reflect the complex interplay between 

cognitive load components in problem-based learning environments. To further elucidate the differences 

between the two instructional models, we conducted independent sample t-tests for each cognitive load 

component. The results of these analyses are presented in Table 2(b). 

The t-test results reveal statistically significant differences between the EPBL and PBL groups 

across all cognitive load components (p < 0.001 for all comparisons). The large effect sizes, as indicated 

by Cohen’s d values, underscore the practical significance of these differences. The particularly large 

effect size for ME (d = -2.263) highlights the substantial impact of the EPBL approach on reducing 

extraneous cognitive load compared to the PBL approach. These findings align with previous research 

on the efficacy of worked examples in managing cognitive load. For instance, Sweller et al. (2019) 

demonstrated that worked examples can significantly reduce extraneous cognitive load by providing 

learners with explicit problem-solving schemas [2]. Our results extend this understanding to vocational 

programming education, suggesting that integrating worked examples in the EPBL approach may 

benefit novice programmers grappling with complex iterative structures. 

The lower ME scores observed in the EPBL group are consistent with the findings of Chen et al. 

(2018), who reported that worked examples can reduce the cognitive demands associated with problem-

solving, particularly for learners with limited prior knowledge. In programming education, where 

students must simultaneously manage syntactical rules, logical structures, and problem-solving 

strategies, the scaffolding provided by worked examples appears to play a crucial role in managing 

cognitive load. The higher RPI scores in the EPBL group suggest that this approach may facilitate more 

efficient information processing. It aligns with the cognitive load theory principle that reducing 

extraneous load can free up cognitive resources for germane processing [21]. By providing students with 

clear examples of problem-solving strategies, the EPBL approach may enable learners to focus more on 

understanding and internalizing the underlying programming concepts rather than expending cognitive 

resources on navigating unfamiliar problem spaces. The superior LO scores observed in the EPBL group 

further support the effectiveness of this instructional approach in promoting learning outcomes. This 

finding is consistent with the work of [9], who demonstrated that example-based learning can enhance 

knowledge transfer and skill acquisition in complex domains. In programming education, where 

applying abstract concepts to concrete problems is crucial, the EPBL approach offers significant 

advantages over traditional problem-based learning [26], [27], [28]. 

However, it is essential to note that the relationship between cognitive load components is 

complex and may vary depending on learner characteristics and task demands. The positive correlation 

between ME and LO observed in both instructional models suggests that some level of mental effort is 

necessary for effective learning. It aligns with the concept of desirable difficulties in learning, which 

posits that some cognitive challenges are beneficial for long-term retention and transfer [29]. The 

negative correlation between RPI and LO in the PBL group is an intriguing finding that warrants further 

investigation. One possible explanation is that students in the PBL group who reported higher levels of 

information reception and processing may have been overwhelmed by the complexity of the 

programming tasks, leading to suboptimal learning outcomes. This interpretation is consistent with the 

expertise reversal effect described by Kalyuga et al. [30], which suggests that instructional techniques 

that are effective for novices may become less effective or even detrimental as learners gain expertise. 
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The Efficacy of the EPBL 

In conclusion, the results of this study provide strong evidence for the efficacy of the EPBL 

instructional model in managing cognitive load and enhancing learning outcomes in vocational 

programming education. Integrating worked examples offers significant advantages in reducing 

extraneous cognitive load, facilitating information processing, and promoting knowledge acquisition. 

These findings have important implications for instructional design in programming education and 

highlight the potential of cognitive load theory as a framework for optimizing learning experiences in 

complex domains. The present study’s findings offer compelling evidence for the efficacy of the 

Example-Problem-Based Learning (EPBL) instructional model in managing cognitive load and 

enhancing learning outcomes within the context of vocational programming education. The results 

demonstrate that EPBL significantly outperforms the Problem-Based Learning (PBL) approach across 

multiple dimensions of cognitive load and learning performance. These findings align with and extend 

the existing body of research on cognitive load theory and instructional design in complex learning 

domains. The observed lower Mental Effort (ME) scores in the EPBL group, coupled with higher 

Receiving and Processing Information (RPI) and Learning Outcomes (LO) scores, provide strong 

support for the theoretical underpinnings of cognitive load theory. This pattern suggests that the EPBL 

approach effectively reduces extraneous cognitive load while simultaneously enhancing germane load, 

thereby optimizing the allocation of cognitive resources during the learning process. These results are 

consistent with the findings of Sweller et al. (2019) [2], who demonstrated that well-designed 

instructional interventions can minimize extraneous load, freeing up cognitive resources for schema 

acquisition and automation. The superior performance of the EPBL model can be attributed to its 

strategic integration of worked examples, which are particularly effective in reducing cognitive load for 

novice learners  [15]. By providing students with explicit problem-solving schemas, worked examples 

alleviate the need for extensive means-end analysis, a process that typically imposes a heavy cognitive 

burden on learners in complex domains such as computer programming [9]. This reduced extraneous 

load allows students to focus more cognitive resources on understanding the underlying principles and 

concepts, facilitating more efficient and effective learning. 

The positive correlation between ME and LO in both instructional models underscores the 

complex relationship between cognitive load and learning outcomes. This finding aligns with the 

concept of desirable difficulties in learning, which posits that some level of cognitive challenge is 

beneficial for long-term retention and transfer [31]. However, the stronger positive correlation in the 

EPBL group suggests that this approach may be more effective in calibrating the level of challenge to 

students’ cognitive capacities, striking a balance between cognitive load and learning efficiency. The 

negative correlation between RPI and LO in the PBL group is an intriguing finding that warrants further 

investigation. This counterintuitive relationship may indicate the expertise reversal effect, as described 

by Kalyuga et al. [30]. Students in the PBL group who said they received and processed more 

information may have been overwhelmed due to the lack of work examples to guide them. This 

interpretation is consistent with recent research by Klepsch et al. (2017) [4], who emphasized the 

importance of tailoring instructional approaches to learners’ prior knowledge and expertise levels. 

 

Limitations and Future Research 

While the current study provides strong evidence for the efficacy of the EPBL approach in 

managing cognitive load and enhancing learning outcomes in vocational programming education, it is 

important to acknowledge several limitations that should be addressed in future research. Firstly, while 

adequate for detecting significant effects, the study’s sample size was relatively modest. Future studies 

should aim to replicate these findings with more extensive and diverse samples to enhance the 

generalizability of the results across different educational contexts and student populations. Secondly, 

the current study focused on a specific programming concept (iterative structures) within a particular 



Elinvo (Electronics, Informatics, and Vocational Education), 9(2), November 2024 - 317 
ISSN 2580-6424 (printed) | ISSN 2477-2399 (online)  

 Herlambang, A.D., et. al. Students’ Cognitive Load on Computer Programming Instructional Process Using EPBL and PBL ... 

programming language. Future research should investigate its effectiveness across a more 

comprehensive range of programming concepts and languages to establish the broader applicability of 

the EPBL approach. This expansion would provide valuable insights into the robustness of the EPBL 

model across different levels of task complexity and domain-specific challenges. Thirdly, while the 

study employed multiple measures of cognitive load, including subjective ratings of mental effort and 

objective performance measures, future research could benefit from including more direct measures of 

cognitive load. For instance, incorporating physiological measures such as eye-tracking data or 

electroencephalography (EEG) could provide more nuanced insights into the cognitive processes 

underlying learning in EPBL and PBL environments [32]. 

Furthermore, the current study was conducted over a relatively short time frame, focusing on 

immediate learning outcomes. Longitudinal studies examining the long-term retention and transfer of 

programming skills acquired through EPBL would be invaluable in assessing the durability of learning 

gains and the development of expertise over time. Such studies could also investigate the potential of 

EPBL to foster self-regulated learning skills, which are crucial for ongoing professional development in 

rapidly evolving fields like computer programming [7]. Another avenue for future research lies in 

exploring the potential of adaptive learning systems that dynamically adjust the level of scaffolding 

provided based on individual students’ cognitive load and performance. Recent advances in educational 

technology and artificial intelligence offer promising opportunities for developing intelligent tutoring 

systems that seamlessly transition between worked examples, completion problems, and problem-

solving tasks based on real-time assessments of student progress [33]. Integrating collaborative learning 

elements within the EPBL framework also merits further investigation. While the current study focused 

on individual learning, future research could examine how peer collaboration and group problem-

solving activities can be effectively incorporated into the EPBL model without inducing excessive 

cognitive load. This line of inquiry could draw upon recent work on collaborative cognitive load theory 

to optimize the balance between individual and group learning activities [1]. Additionally, future studies 

should investigate the role of motivational factors in mediating the relationship between cognitive load 

and learning outcomes in EPBL environments. Integrating self-determination theory [34] with cognitive 

load theory could provide valuable insights into how instructional design can simultaneously optimize 

cognitive load and enhance student motivation and engagement [35], [36]. 

From a practical standpoint, the findings of this study have significant implications for 

instructional design in vocational programming education and potentially in other complex learning 

domains. The superior performance of the EPBL model suggests that educators and curriculum 

designers should consider incorporating worked examples and completion problems as crucial 

components of their instructional strategies, particularly in the early stages of skill acquisition. However, 

it is essential to note that implementing EPBL may require significant changes to existing curricula and 

teaching practices. Future research should focus on developing practical guidelines and professional 

development programs to support educators in effectively implementing EPBL approaches in their 

classrooms. It could include the development of repositories of high-quality work examples and 

completion problems tailored to specific programming languages and concepts [37], [38]. 

Moreover, the potential of EPBL to address issues of equity and inclusion in computer science 

education should be explored. By providing structured support and scaffolding, EPBL may help to level 

the playing field for students from diverse backgrounds and with varying levels of prior programming 

experience. Future studies could investigate the efficacy of EPBL in reducing achievement gaps and 

promoting diversity in computer science education. In conclusion, this study provides robust evidence 

for the effectiveness of the EPBL instructional model in managing cognitive load and enhancing learning 

outcomes in vocational programming education. The findings underscore the importance of cognitive 

load theory in designing instructional materials and approaches for complex learning domains. While 

the results are promising, they also highlight the need for continued research to refine our understanding 

of the intricate relationships between instructional design, cognitive load, and learning outcomes in 
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programming education and beyond. As computer science education evolves in response to rapid 

technological advancements and changing workforce demands, cognitive load theory and the EPBL 

approach offer a valuable framework for developing effective and efficient learning experiences. By 

building on the findings of this study and addressing the identified limitations and future research 

directions, educators and researchers can work towards creating more inclusive, engaging, and impactful 

programming education that equips students with the skills and knowledge needed to thrive in the digital 

age. 

CONCLUSION 

Note that throughout the presentation of the result, a great attempt has been made to ensure that 

an EPBL and PBL instructional sequence differentially affects students’ cognitive load while learning 

vocational computer programming. Specifically, the format better coped with the increased cognitive 

load of students, seen through lower ME and higher RPI scores and better LO presentation compared to 

the PBL group. More critically, the results of the present study are consistent with CLT theory as EPBL 

significantly decreased extraneous cognitive load and increased germane load. These are supported by 

the negative correlations of ME and RPI with EPBL and the positive ones between ME and LO and RPI 

and LO. These associations suggest that EPBL effectively balances cognitive demands, thus facilitating 

students to use more resources towards schema acquisition and automation. Such a finding is noteworthy 

for its implications in designing and developing instructional strategies in vocational programming 

education. EPBL, as an alternative format to combine worked examples with problems to be solved, 

maximized positive load management for enhancement in overall learning. For example, problems and 

completion exercises should form part of instructional strategies early in the instructor’s skill 

development cycle. Long-term retention and transferability of programming skills in EPBL further need 

to be researched in terms of how all these elements work with aspects such as motivational influences, 

self-efficacy, and prior knowledge that interact with cognitive load. An even more exciting issue, 

probably with a closer practical application of the CLT principles in teaching programming, would be 

the development of adaptive learning systems that could autonomously adapt to an individual learner’s 

cognitive load and success. That makes this study very pivotal research for confirming that design 

methods used for instruction in complex learning environments require cognitive load theory. Evidence-

based approaches, such as EPBL, might support effectiveness and efficiency in programming education 

in a vocational context, thus better-preparing students for the challenges of the rapidly changing 

technology industry. 
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