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As one of the world's biggest coal producers, it is essential for Indonesia to follow the 
trend of benchmark coal price fluctuations for any future possibilities. This study 
compared two methods of forecasting benchmark coal prices to evaluate the accuracy 
of the predictions used a nonparametric regression based on the local polynomial 
estimator and a parametric ARIMA method. Local polynomial analysis obtained a 
MAPE of 2.929278% using a CV method based on optimal bandwidth of 5.06 at order 
2 with a cosine kernel, which means highly accurate forecasting accuracy. As for the 
ARIMA analysis, the data does not meet the assumption of normality, but forecasting 
is still continued with the best model ARIMA (1,2,1) model so that the MAPE is 
12.6327%, which means good forecasting accuracy. Therefore in this study, the use of 
nonparametric regression methods using local polynomial estimators on data with 
non-normal distribution are more suitable to obtain accurate prediction results.  

 
Scan me 

Sebagai salah satu produsen batubara terbesar di dunia, penting bagi Indonesia dalam 
mengikuti tren fluktuasi harga batubara acuan untuk mengetahui potensi yang 
mungkin terjadi di masa depan. Penelitian ini membandingkan dua metode 
peramalan harga batubara acuan untuk mengevaluasi keakuratan prediksi dengan 
menggunakan regresi nonparametrik berdasarkan estimator polinomial lokal dan 
metode parametrik ARIMA. Analisis polinomial lokal memperoleh MAPE sebesar 
2.929278% menggunakan metode CV berdasarkan bandwidth optimal 5.06 pada orde 
2 dengan kernel cosinus, yang berarti hasil peramalan ini sangat akurat. Sementara 
untuk analisis ARIMA, data tidak memenuhi asumsi normalitas namun peramalan 
tetap dilanjutkan dengan model terbaik yaitu ARIMA (1,2,1) dan diperoleh MAPE 
sebesar 12.6327% yang berarti akurasi peramalan yang baik.  Metode nonparametrik 
dengan menggunakan estimator polinomial lokal pada data yang berdistribusi tidak 
normal lebih sesuai untuk mendapatkan hasil prediksi yang akurat.  
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INTRODUCTION 

Coal represents a primary source of energy in Indonesia as one of the main export commodities in Indonesia 
with increased production reaching 775.2 million tons in 2023 (Kementerian ESDM, 2024). A significant increase in 
coal production, driven by rising international prices and increased regional demand, has positioned Indonesia as 
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the most flexible exporter in 2023, with exports reaching nearly 500 Mt (IEA, 2023). The successful realization has 
led to increased domestic utilization of coal, which will contribute to national energy security and economic growth. 
The Benchmark Coal Prices are calculated as the average of the Global Coal Newcastle Index (GCNC), Newcastle 
Export Index (NEX), Indonesia Coal Index (ICI), and Platt's 5900 in the previous month with equalized quality. This 
price is utilized in the direct exchange of coal commodities. (Gunarto & Wulansari, 2020).  

The fluctuation of Indonesia's benchmark coal price is irrefutable. It reached its highest level in November 
2021 at USD 215.01 per ton and then decreased to USD 158.50 per ton in January 2022. This was the consequence 
of an increase in domestic coal production within China. In the same year, the intensification of geopolitical tensions 
between Russia and Ukraine led to a surge in global coal commodity prices. This was beneficial for Indonesia, so 
that the Ministry of Energy and Mineral Resources has established the price at USD 288.4 per ton in April 2022, until 
finally the dynamics of the benchmark coal price reached the highest value in October 2023 at USD 330.97 per ton 
(Kementerian ESDM, 2022).  

The high demand for coal has an impact on the fluctuation of the benchmark coal price. In preparing advanced 
strategies for all possibilities in the future, a prediction of the fluctuating pattern of benchmark coal price data can 
be made. A study by Prahesti et al. (2023) has predicted the benchmark coal price using Autoregressive Integrated 
Moving Average (ARIMA) and obtained a Mean Absolute Percentage Error (MAPE) of 23.14%. ARIMA is a univariate 
parametric time series method commonly used to make predictions based on a synthesis of historical data patterns 
(Hendrawan, 2013). Furthermore, a study by Hidayanti et al. (2022) also predicted the benchmark coal price using 
quadratic parametric regression and obtained a MAPE of 9.031%. In practice, quadratic regression method is 
limited to identify parabolic trend, while the reference coal price data shows a fluctuating non-stationary pattern. 
Time series analysis using both parametric methods will require an assumption for get valid results (Ardianti et al., 
2020). Non-stationary fluctuations in the reference coal price data can be more effectively handled with ARIMA 
through a differentiation process and with a non-parametric approach. In nonparametric regression, there are no 
requirements for stationarity or model error assumptions in making decisions about the goodness of the model so 
that it is more flexible, so it can use quantitative measures such as 𝑅2 and the Mean Absolute Percentage Error 
(MAPE) (Suparti & Santoso, 2024). In this study, researchers analyze the accuracy of benchmark coal price (HBA) 
predictions using nonparametric regression analysis with a local polynomial approach to assess the accuracy 
benchmark coal price predictions. Local polynomial regression is an estimator of the kernel regression function 
which is formed based on a polynomial order, where the weight size is determined by the bandwidth parameter 
that regulates the estimation at local points (Prahutama et al., 2018). Local polynomials have several advantages, 
including the ability to reduce asymptotic bias and produce accurate estimates (Welsh & Yee, 2006). Moreover, this 
approach was selected due to its ability to overcome data with fluctuating distributions, and then compared it with 
the ARIMA method which can also handle fluctuating data to identify the minimum MAPE value. The purpose of 
this analysis is to identify the most accurate method for future predictions. 

METHOD 

The data used in this study is a type of secondary data, that is monthly data on the Indonesian Benchmark 
Coal Price (HBA) in units of USD/ton that obtained from the official website of the Ministry of Energy and Mineral 
Resources. The response variable in this study is the reference coal price, while the monthly time index is the 
predictor variable. A total of 87 data points were identified for analysis, 75 representing the in-sample data (January 
2017 to March 2023) and 12 representing the out-sample data (April 2023 to March 2024). The analysis procedures 
in this study are as follows: 
1. Conduct descriptive statistical analysis to provide general information of the data, including the mean, 

standard deviation, maximum and minimum values. 
2. Estimating the parameter values of the regression model using a non-parametric regression based on a local 

polynomial estimator with the following steps: 
a. Determine the optimal bandwidth for orders 1, 2, and 3. Bandwidth selection for time series analysis is 

conducted using the cross-validation (CV) method, then comparing Gaussian and Cosine kernels on in-
sample data based on the best minimum order and CV. 
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b. Using the optimal bandwidth that has been selected in the previous step to estimate the value of the 
regression model parameters on the entire data set, including in-sample, out-of-sample, and all sample 
data, then evaluate it with the MAPE value. 

3. Modeling with the Autoregressive Integrated Moving Average (ARIMA) approach with the following steps: 
a. Test the stationarity of the data in variance using Box-Cox transformation and for stationarity in mean 

using the Augmented Dickey-Fuller (ADF) test. 
b. Identify existing ARIMA models using ACF and PACF plots. 
c. Tests for parameter significance and diagnostic tests for the ARIMA model. If there are multiple 

significant models, the model with the smallest AIC value will be chosen. 
d. Diagnostic tests such as white noise using the Ljung-Box test, homoscedasticity using the Langrange 

Multiplier Engle test, and normality tests using Jarque-Bera test. 
e.  Make forecasts based on the best model and evaluate the prediction results using the MAPE value then 

write the ARIMA model equation. 
4. Comparing the accuracy of prediction results using the local polynomial estimator and ARIMA method based 

on Mean Absolute Percentage Error (MAPE). 

Nonparametric Regression 

In nonparametric regression models, there is no assumption on the shape of the regression function. Instead, 
it is only assumed to be smooth and contained in the Sobolev space. Nonparametric regression is a method 
approach wherein the shape of curve is unknown (Chamidah & Lestari, 2022). The univariate nonparametric 
regression model for n observations is written in the following equation (1). 

𝑦𝑖 = 𝑔(𝑥𝑖) + 𝜀𝑖  ,  𝑖 = 1,2, … , 𝑛 (1) 
with, 
𝑦 : response variable 
𝑥 : predictor variable  
𝑔(𝑥𝑖) : differentiable and continuous regression function 
𝜀  : random error. 

Local Polynomial Estimator 

The local polynomial estimator is a statistical technique employed in nonparametric regression model for 
estimating 𝑔(𝑥). The function 𝑔(𝑥) is approximated by a Taylor expansion around the point 𝑥0 which is written in 
equation (2) below (Chamidah & Lestari, 2022). 

𝑔(𝑥) ≈ ∑
𝑔(𝑘)(𝑥0)

𝑘!

𝑝

𝑘=0
(𝑥 − 𝑥0)𝑘 = ∑ 𝛽𝑘

∗
𝑝

𝑘=0
(𝑥0)(𝑥 − 𝑥0)𝑘  (2) 

with, 
𝑔(𝑘)(𝑥0) : value of the 𝑘-th derivative of 𝑔(𝑥) to 𝑥 at the point 𝑥 = 𝑥0, for 𝑥 ∈ (𝑥0 − ℎ, 𝑥0 + ℎ).  
According to the nonparametric regression model that expressed in equation (1), equation (2) can be 

represented in matrix notation as follows 
𝒚∗ = 𝒙𝑥0

∗ 𝜷∗(𝑥0) + 𝜺∗ (3) 

With,  

𝑿𝒙𝟎
∗  =  (

1 (x1  −  x0) ⋯ (x1  −  x0)𝑝

⋮ ⋱ ⋮
1 (xn  −  x0) ⋯ (xn  −  x0)𝑝

) , 𝒚∗ = (

𝑦1

⋮
𝑦𝑛

) , 𝜺∗ = (

𝜀1

⋮
𝜀𝑛

) (4) 

The estimation of 𝜷∗(𝑥0) in equation (3) is based on the local polynomial approach, which involves taking n 
samples of paired data {𝑥𝑖 , 𝑦𝑖}, 𝑖 = 1,2, … , 𝑛. So that 𝑛 equations can be formed as written in equation 5 below. 

𝑦1 = 𝛽0
∗(𝑥0) + 𝛽1

∗(𝑥0)(x1 − x0) + 𝛽2
∗(𝑥0)(x1 − x0)2 + ⋯ + 𝛽𝑝

∗(𝑥0)(x1 − x0)𝑝 + 𝜀1 

𝑦2 = 𝛽0
∗(𝑥0) + 𝛽1

∗(𝑥0)(x2 − x0) + 𝛽2
∗(𝑥0)(x2 − x0)2 + ⋯ + 𝛽𝑝

∗(𝑥0)(x2 − x0)𝑝 + 𝜀2 

⋮ 
𝑦𝑛 = 𝛽0

∗(𝑥0) + 𝛽1
∗(𝑥0)(xn − x0) + 𝛽2

∗(𝑥0)(xn − x0)2 + ⋯ + 𝛽𝑝
∗(𝑥0)(xn − x0)𝑝 + 𝜀𝑛 

(5) 
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The estimator 𝜷̂∗(𝑥0) is obtained through the application of a local polynomial approximation, utilizing a 
kernel weight function 𝐾ℎ∗(𝑥𝑖 − 𝑥0). The shape of the local polynomial weights is determined by the kernel 

function 𝐾, with the size of the weights determined by the bandwidth (ℎ∗). The estimator 𝜷̂∗(𝑥0)  is obtained 
through a process of minimizing the WLS function. So that, the local polynomial estimator for the regression 
function 𝑔(𝑥) is given by equation (6). 

𝑔̂(𝑥)  = 𝑿𝒙𝟎
∗  [𝑿𝒙𝟎

∗ 𝑻 𝐾ℎ∗(𝑥0)𝑿𝒙𝟎
∗ ]−𝟏𝑿𝒙𝟎

∗ 𝑻𝐾ℎ∗(𝑥0)𝒚∗ (6) 

Kernel Density Estimator 

One type of regression commonly used is kernel regression, which is a nonparametric method. The advantage 
of the kernel is that it can achieve a relatively fast convergence rate. The kernel estimator has several functions, 
including kernel uniform, triangle, epanechnikov, gaussian, quartic, and Cosinus (Kurniasih et al., 2013). In solving 
problems with fluctuating data, this research used Gaussian and Cosine kernel estimators. 

Gaussian kernel function is commonly used in nonparametric regression analysis because it has the advantage 
of being easier to use that is more efficient in some cases, and the weight function of the kernel is defined for all 
real number (Shantika Martha, 2019). Gaussian kernel density function has the form written in equation (7). 

𝐾(𝑥) =
1

√2𝜋
exp (

1

2
(−𝑥2)) 

(7) 

with −∞ < 𝑥 < ∞. 
Cosine kernel function is used in various applications, such as time series forecasting, nonparametric 

regression model analysis. The cosine kernel is efficient for estimation and can handle data with a fluctuating 
distribution, allowing it to approximate data patterns effectively (Salim et al., 2022). Cosine kernel density 
function has the form written in equation (8). 

𝐾(𝑥) =
𝜋

4
cos (

𝜋

2
𝑥) (8) 

with |𝑥| ≤ 1 and 0 for others. 

Cross Validation Method 

One of the methods that can be used to select the optimal smoothing parameters in nonparametric 
regression is the cross validation (CV) method that defined in equation (9) below (Chamidah & Lestari, 2022).  

𝐶𝑉(ℎ) =
1

𝑛
∑[𝑦𝑖 − 𝑔̂ℎ,−𝑖(𝑥𝑖)]

2
𝑛

𝑖=1

 
(9) 

with, 
𝑦𝑖   :  response variable at the 𝑖-th observation 
𝑔̂ℎ,−𝑖(𝑥𝑖) : estimated value of the regression function at 𝑥𝑖  without considering the 𝑖-th observation 

The optimal bandwidth value is determined by identifying the bandwidth that result in the minimum CV value. 

Autoregressive Integrated Moving Average (ARIMA) 

The most common method for forecasting is ARIMA Box-Jenkins, which is used to process univariate time 
series. In order to be processed using the ARIMA Box-Jenkins method, a time series data set must meet the criteria 
for stationarity (Makridakis et al., 1999). A time series is considered stationary if the average and variance are 
constant, the data has no trend and no seasonal element. To handle non-stationary time series data, an appropriate 
𝑑 th differencing process is used. The ARIMA(p,d,q) model can be written as follows (Wei, 2006). 

ϕ𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃0 + 𝜃𝑞(B)𝑎𝑡 
(10) 

With,  

ϕ𝑝(𝐵) = (1 − ϕ1𝐵 − ⋯ − ϕ1𝐵𝑝) is an AR operator 

𝜃𝑞(B) = (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞) is a MA operator. 
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The Augmented Dickey-Fuller (ADF) test is commonly used to evaluate the stationarity of data in the mean by 
examining the existence or absence of unit roots within the model (Pitaloka et al., 2019). The hypothesis 
testing is  

𝐻0 ∶  𝛿 = 0 (there is a unit root or data is not stationary) 

𝐻1 ∶ 𝛿 < 0 (there is no unit root or data is stationary) 

With a significance level of 𝛼, the test criteria 𝐻0 is rejected if 𝜏-statistic < 𝜏(𝛼;𝑛−1)or p-value < 𝛼.  

The test statistic for the Dickey-Fuller test is expressed by Equation (11), with 𝛿̂ representing the estimator of 

δ and SE(𝛿̂) representing the standard error of δ. 

𝜏𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝛿̂ −  𝛿

𝑆𝐸( 𝛿̂)
 (11) 

Non-stationary time series data in terms of the mean can be addressed by applying differencing. Stationarity 
testing for variance can be conducted by examining the value of λ in the Box-Cox transformation. A λ value that is 
not equal to one indicates that the data is not stationary in variance, and thus the data must be transformed using 
the Box-Cox method (Suparti & Santoso, 2024). The Box-Cox transformation is expressed by Equation (12). 

𝑍𝑡
∗ = {

𝑍𝑡
λ−1

𝜆
,         λ ≠ 0

𝑙𝑛 𝑍𝑡 ,             λ = 0

 (12) 

Data that are already stationary can be used to build ARIMA models with the following steps (Ardi 
et al., 2017). 
a. Identify the model by determining the order 𝑝 and 𝑞 from the ACF and PACF plots. 
b. Estimation of the model parameters, with criteria for testing the model as significant if the p-value 

< 𝛼. 
c. Model diagnostic test, where the residuals obtained must fulfill the hypothesis assumptions of 

white noise or independence using Ljung-Box, normal distribution using the Jarque-Bera Test, and 
homoscedasticity or the model has a constant variance using Lagrange Multiplier Test.  The model 
passes the diagnostic test if the p-value > 𝛼. 
At the forecasting step, the best candidate ARIMA model is selected that has the smallest Akaike 

Information Criterion (AIC) value (Wei, 2006) and by considering the concept of parsimony that defined 
by selecting the minimum number of model parameters that can adequately explain the model. 

Mean Absolute Percentage Error (MAPE) 

MAPE is a statistical measure used to evaluate the accuracy in a forecasting methodology. Here is the formula 
to calculate MAPE 

MAPE =
1

𝑁
 ∑ |

𝑌𝑡 − 𝑌̂𝑡

𝑌𝑡
| × 100%

𝑁

𝑡=1

 (13) 

with,  
𝑁 : number of observations  
𝑌𝑡 : actual value at time 𝑡 

𝑌̂𝑡 : forecasted value at time 𝑡 

Table 1 below explains the meaning of the MAPE value (Chang et al., 2007). 

Table 1. MAPE values 

MAPE Forecasting Accuracy 

<10% Highly accurate 
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10-20% Good  
20-50% Reasonable  
>50% Inaccurate  

 

 

 

 

 

 

RESULT AND DISCUSSION 

Descriptive Analysis 

 

Figure 1. Time series plot of benchmark coal price 

The results of the descriptive statistics in Table 2 show that the mean of benchmark coal price from January 
2017 to March 2024 is 131.06 USD/ton, with a standard deviation of 80.72. This indicates that each data in the 
period tends to be homogeneous or spread around its average value, characterized by a standard deviation value 
that is lower than the mean. The lowest HBA of 49.42 USD/ton was observed in September 2020, a consequence 
of China and India implementing import restrictions to reduce their import needs. A significant increase was 
observed when the HBA value reached 330.97 USD/ton in October 2022. The intensification of geopolitical tensions 
between Russia and Ukraine at the time led to a surge in global coal commodity prices. Fluctuations in reference 
coal price data are shown in Figure 1. 

Table 2. Statistics descriptive 

Variable Mean StDev Minimum Maximum 

HBA 131.06 80.72 49.42 330.97 

 

Optimal Bandwidth Using Local Polynomial Estimator 

The selection of optimal bandwidth was selected on 75 in-sample data of benchmark coal prices for monthly 
time periods in January 2017 to March 2023 using the Cross Validation (CV) method with Gaussian and Cosine 
kernels. In this study, parameter estimation in local polynomial regression uses orders 0, 1, and 2 until the optimal 
bandwidth value is obtained by considering the minimum CV value. The results of selecting the optimal bandwidth 
for the Gaussian and Cosine kernels based on the minimum CV are shown in Table 3 below. 

Table 3. Bandwidth test result comparison 

Kernel Function Orde 
Optimal 

Bandwidth 
CV Minimum MSE MAPE (%) 
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Gaussian 

0 1.18 143.0941 40.14696 2.883984 

1 1.29 146.9723 44.77373 3.096486 

2 1.98 142.3610 66.89165 2.890855 

Cosinus 

0 3.00 138.2877 46.93627 3.239961 

1 3.18 145.9416 50.67470 3.464946 

2 5.06 136.1164 66.31777 2.929278 

Based on Table 3, the optimal bandwidth is located at order 2 using the Cosine kernel function, which is 5.06 
with a minimum CV value of 136.1164. This optimal bandwidth at order 2 will be used on in-sample data to estimate 

the model. The goodness of fit of the in-sample model can be measured using 𝑅2  or the coefficient of 
determination (Suparti & Santoso, 2024).  In this case, the 𝑅2 value with the optimal bandwidth is obtained at 
99.05207%, indicating that the model is classified as strong. A plot of the optimal bandwidth towards the CV value 
is shown in Figure 2 below. 

 

Figure 2. Plot of benchmark coal price data with optimal bandwidth  

Parameter Model Estimation 

The results of the estimated values of the model parameters (𝛽̂0, 𝛽̂1,  𝛽̂2) on the in-sample data are shown 

in Table 4 below.  

Table 4. Parameter estimation of in-sample data 

𝑥 𝛽̂0 𝛽̂1  𝛽̂2 
1 86.04789 -3.09512440 1.18167418 
2 84.25379 -1.11696093 -0.06834917 
3 83.06080 -1.17415948 -0.03807204 
4 81.25085 -0.98551312 0.43005397 
5 79.72908 -0.08927099 0.98929643 
⋮ ⋮ ⋮ ⋮ 

75 281.45478 -2.85195240 3.48422055 

Based on equation 5, the local polynomial model for in-sample data of benchmark coal price are presented in 
equation 14. 

𝑦1 = 86.04789 + (−3.09512440)(x1 − x0) + 1.18167418(x1 − x0)2 + 𝜀1 

𝑦2 = 84.25379 + (−1.11696093)(x2 − x0) + (−0.06834917)(x2 − x0)2 + 𝜀2 
⋮ 

𝑦75 = 281.45478 + (−2.85195240)(x75 − x0) + 3.48422055(x75 − x0)2 + 𝜀75 

(14) 
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Figure 3. Comparison plot of estimated and observed results of in-sample data 

The estimation results in Figure 3 using the CV method with optimal bandwidth show an optimal curve that is 
neither too smooth nor too rough. This indicates that the estimation results are optimal, thereby rendering them 
statistically representative and suitable for prediction purposes. The MAPE test results on modeling in-sample data 
with an optimal bandwidth of 5.06 obtained a MAPE of 2.929278%. 

While the results of the estimated values of the model parameters (𝛽̂0, 𝛽̂1,  𝛽̂2) on the out-sample data are 

shown in Table 5 below. 
Table 5. Parameter estimation of out-sample data 

𝑥 𝛽̂0 𝛽̂1  𝛽̂2 
76 259.9202 -50.726069 15.9392891 
77 223.0153 -27.926971 5.5783321 
78 201.4235 -21.898272 2.2682386 
79 180.2933 -19.026492 2.6825221 
80 162.9474 -16.072860 2.5552968 
⋮ ⋮ ⋮ ⋮ 

87 112.4648 -8.0133 -1.8478 

The local polynomial model for out-sample data of benchmark coal price is presented in equation 15. 

𝑦76 = 259.9202 + (−50.726069)(x76 − x0) + 15.9392891(x76 − x0)2 + 𝜀76 

𝑦77 = 223.0153 + (−27.926971)(x77 − x0) + 5.5783321(x77 − x0)2 + 𝜀77 
⋮ 

𝑦87 = 112.4648 + (−8.0133)(x87 − x0) + (−1.8478)(x87 − x0)2 + 𝜀87 

(15) 
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Figure 4. Comparison plot of estimated and observed results of out-sample data 

Based on out-sample data modelling, the MAPE is 6.173094%. Overall, parameter estimation on all-sample 
data shows a MAPE of 3.486737%. This indicates that the model has highly accurate predictive capabilities 
regarding the Indonesian benchmark coal price.  

ARIMA Analysis 

ARIMA analysis using 75 in-sample data. The stationarity of the data was tested with a significance level of 5%. 
The stationarity analysis in variance using the Box-Cox transformation shows a rounded value (𝜆) of -0.5, so the 

data will be transformed into the form 𝜆−0.5 to make the data stationary for forecasting. While the results of testing 
for stationarity in the mean using the ADF test are presented in Table 6. 

 
 

Table 6. ADF test results 

 t-statistics Prob Decision 

HBA -0.370730 0.9084 Accept 𝐻0 
D(HBA) -5.117139 0.0000 Reject 𝐻0 

D(HBA,2) -11.43442 0.0001 Reject 𝐻0 

Based on Table 6, the critical value of the test in 5% level is -2.895924. The original data shows that it is not 
stationary with a probability 0.9084 > 0.05 or the t-statistic value is less than the Dickey Fuller critical value. The data 
is continued at the differencing stage, and the probability value is less than 0.05 at the first and second differencing, 
so the there is no unit root or the benchmark coal price data is stationary. The stationary data can be continued to 
identify the ARIMA model based on the ACF and PACF plots, as shown in the figure below. 

 

 

 

 

 

 

Figure 5. ACF and PACF plots at d=1 Figure 6. ACF and PACF plots at d=2 

The ACF and PACF plots of the first differencing results in Figure 5 indicate that there is one significant lag out, 
so that the tentative models that can be identified are ARI(1,1), MA(1,1), and ARIMA(1,1,1). Figure 6 presents the 
plot of the second differencing results, with the ACF plot indicating a cut-off at lag 1 and the PACF plot indicating a 
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cut-off at lag 2, so that the tentative models that can be identified are ARI(1,2), ARI(2,2), MA(2,1), ARIMA(1,2,1), 
and ARIMA(2,2,1). 

After determining the ARIMA model, diagnostic tests can be conducted to determine the optimal model for 
estimation in forecasting. The results of the parameter significance test and diagnostic test show that none of the 
three models in the first differencing were identified as significant at the 5% significance level. Therefore, the model 
with the second differencing was used for further test. 

Table 7. Parameter significance test 

Model Parameter Coefficient Prob AIC 

ARI(1,2) ϕ̂1 -0.679284 0.0000 8.797549 

ARI(2,2) ϕ̂2 0.286397 0.0001 9.329350 

IMA(2,1) 𝜃1 -1.000000 0.9985 8.628219 

ARIMA(1,2,1) 
ϕ̂1 -0.271823 0.0056 

8.629623 
𝜃1 -0.808003 0.0000 

ARIMA(2,2,1) 
ϕ̂2 0.0263351 0.0057 

8.587727 
𝜃1 -1.000000 0.9988 

Based on Table 7, the results of the model parameter significance test indicate that at the 5% significance level, 
only three of the five models fulfill the criteria for testing the significant parameters of the model, these are ARI(1,2), 
ARI(2,2), and ARIMA(1,2,1), where ARIMA(1,2,1) has the smallest AIC value among the three significant models, 
which is 8.629623. So that ARIMA(1,2,1) can be used as the best preliminary model choice to be continued in the 
diagnostic test. 

Diagnostic testing of the white noise assumption is by using the Ljung box to test whether there is a correlation 
in the residuals between the lags of each model. The ACF and PACF plots of the ARIMA(1,2,1) model residuals are 
shown in Figure 7. 

 

Figure 7. ACF and PACF plots of ARIMA(1,2,1) model residuals 

Figure 7 shows that the probability value of the Ljung box test is greater than 0.05 at all lags, which means that 
there is no correlation in the residuals between lags (independent residuals) in the ARIMA (1,2,1) model.  

Table 8. Heteroskedasticity test 

F-statistic 2.791349 Prob. F(1,70) 0.0992 
Obs*R-squared 2.761003 Prob. Chi-Square(1) 0.0966 

Assumption of residual homoscedasticity is tested using the Lagrange Multiplier test (LM test). The probability 
value of Obs * R-squared = 0.0966 > 0.05. This indicates that the ARIMA (1,2,1) model does not have an ARCH effect 
or a homogeneous residual model. 
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Figure 8. Normality test 

Residual normality test result with the Jarque-Bera test as shown in Figure 8, indicate that the p-value of the 
ARIMA(1,2,1) model is 0.000 < 0.05, which indicates that the residuals are not normally distributed. The researchers 
also tested two other ARIMA models such as ARIMA(1,2) and ARIMA(2,2), the results indicated that all these 
tentative models do not meet the assumption of residual normality. Therefore, the decision to proceed with the 
ARIMA(1,2,1) model was based on its lowest AIC criteria compared to the other ARIMA models despite none of 
them fulfilling normality. The subsequent analysis will compare the MAPE values with the local polynomial 
regression method, which does not require any assumptions. This is why, in forecasting Indonesian benchmark coal 
price data, it is recommended to use nonparametric methods, which can be used on data that has a normal 
distribution or not. In this study, researchers continue to forecast to see the MAPE using ARIMA(1,2,1) model. 
Therefore using the equation (16), the equation of the ARIMA(1,2,1) model is written in equation (17). 

ϕ𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃0 + 𝜃𝑞(B)𝑎𝑡 (16) 

(1 − 𝐵)𝑑(1 − ϕ1𝐵 − ⋯ − ϕ1𝐵𝑝)𝑍𝑡 = (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞)𝑎𝑡 

(1 − 𝐵)2(1 + 0.271823𝐵)𝑍𝑡 = (1 − 0.808003𝐵)𝑎𝑡 

(1 − 1.728177𝐵 + 0.456354𝐵2 + 0.271823𝐵3)𝑍𝑡 = (1 − 0.808003𝐵)𝑎𝑡 

 

1

√𝑍𝑡

=
1

√1.728177𝑍𝑡−1

−
1

√0.456354𝑍𝑡−2

−
1

√0.271823𝑍𝑡−3

+ 𝑎𝑡 − 0.808003𝑎𝑡−1 
(17) 

The following table presents the results of forecasting the benchmark coal price on the out-sample data for 
the next 12 periods. 

Table 9. ARIMA (1,2,1) model forecast results 

Actual Forecast APE 

265.26 278.5298221 5.002572 
206.16 265.4029411 2873639 
191.26 203.4953327 6.397225 
191.6 178.5731304 6.798993 
179.9 189.1608528 5.147778 

133.13 182.9680472 37.43562 
123.96 131.3392935 5.952963 
139.8 113.32341 18.93891 

117.38 138.419476 17.92424 
125.85 123.3801045 1.962571 
124.95 121.4915376 2.767877 
109.77 125.7166125 14.5273 

 MAPE (%) 12.6327 

As shown in Table 9, the forecast results using the ARIMA(1,2,1) model on 12 out-sample data gives a MAPE 
of 12.6327%, which means that the model's forecasting ability is good. 

Table 10. Prediction results of ARIMA and local polynomial regression  
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Method Parameter MAPE (%) Accuracy 

Local Polynomial 
Regression 

Bandwith 5.06 ; 
order 2 

2.929278 Highly accurate 

ARIMA ARIMA (1,2,1) 12.6327 Good 

Table 10 compares the prediction accuracy of ARIMA and Local Polynomial Regression models for Indonesia's 
benchmark coal price. Local Polynomial Regression achieved a much lower MAPE of 2.93% labeled as "Highly 
accurate," while ARIMA had a higher MAPE of 12.63% labeled as “Good”. Thus, Local Polynomial Regression 
outperformed ARIMA in prediction accuracy. 

CONCLUSION 

In forecasting reference coal price fluctuations, a nonparametric regression method with a local polynomial 
approach is used, with an optimal bandwidth is 5.06 and a minimum CV value of order 2 is 136.1164 obtained using 
the Cosine kernel. The MAPE value is 2.929278%, indicating that the forecasting ability is highly accurate. While 
parametric testing using ARIMA with the optimal model is ARIMA (1,2,1) but this model did not meet the 
assumption of normality. However, this model was still used for forecasting and obtained a MAPE value of 
12.6327%, which indicates a good forecasting. Therefore, forecasting using a local polynomial approach is more 
suitable for analysing the accuracy of predicting Indonesian benchmark coal prices. 
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