KARAKTERISASI KUALITAS LASAN PADA BAHAN SERUPA AZ31B DENGAN PROSES MICRO-FRICTION STIR SPOT WELDING (µFSSW) UNTUK APLIKASI KENDARAAN

Agus Widyianto, Universitas Negeri Yogyakarta, Indonesia
Aan Yudianto, Universitas Negeri Yogyakarta, Indonesia
Herminarto Sofyan, Universitas Negeri Yogyakarta, Indonesia
Gunadi Gunadi, Universitas Negeri Yogyakarta, Indonesia

Abstract


Keberhasilan penerapan micro-friction stir spot welding (µFSSW) pada bahan AZ31B pada penelitian ini memiliki implikasi yang signifikan untuk aplikasi praktisnya di berbagai industri. Temuan penelitian menunjukkan bahwa teknik pengelasan ini dapat menghasilkan sambungan yang kokoh pada material AZ31B dengan ketebalan 0,3 mm dan 0,5 mm. Geometri pengelasan optimal diperoleh pada 500 milidetik dan 500 mikron, menghasilkan beban geser maksimum dan beban silang masing-masing sebesar 326 N dan 88 N. Studi ini juga meneliti sifat mekanik sambungan, termasuk kekerasannya, dan menganalisis struktur mikro material. Kekerasan material meningkat pada center stir zone (SZ), menandakan terbentuknya sambungan yang lebih kuat. SZ juga menunjukkan butiran yang lebih kecil dibandingkan dengan thermo-mechanically affected zone (TMAZ), menunjukkan bahwa teknik µFSSW memiliki dampak positif pada penyempurnaan butiran. Namun, heat-affected zone (HAZ) menunjukkan butiran yang terrekristalisasi sebagian. Secara keseluruhan, temuan ini menunjukkan potensi µFSSW sebagai teknik pengelasan yang andal untuk material AZ31B, dengan sifat mekanik yang menjanjikan dan struktur mikro yang lebih baik. Penelitian lebih lanjut dapat mengeksplorasi penerapannya pada bahan dan industri lain, serta mengoptimalkan parameter pengelasan untuk hasil yang lebih baik.

Keywords


Micro-friction stir spot welding; Magnesium alloy; Mechanical properties; Metallography

Full Text:

PDF

References


Afrin, N., Chen, D. L., Cao, X., & Jahazi, M. (2008). Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. Materials Science and Engineering: A, 472(1-2), 179-186.

Ahmed, M. M. Z., El-Sayed Seleman, M. M., Ahmed, E., Reyad, H. A., Touileb, K., & Albaijan, I. (2022). Friction Stir Spot Welding of Different Thickness Sheets of Aluminum Alloy AA6082-T6. Materials, 15(9), 2971.

Badarinarayan, H., Shi, Y., Li, X., & Okamoto, K. (2009). Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. International Journal of Machine Tools and Manufacture, 49(11), 814-823.

Baskoro, A. S., Amat, M. A., & Widiyanto, M. A. (2019). Effect of Tools Geometry and Dwell time on Mechanical Properties and Macrograph of Two-Stage Refilled Friction Stir Spot Micro Weld.

Baskoro, A. S., Hadisiswojo, S., Kiswanto, G., Amat, M. A., & Chen, Z. W. (2020). Influence of welding parameters on macrostructural and thermomechanical properties in micro friction stir spot welded under high-speed tool rotation. The International Journal of Advanced Manufacturing Technology, 106(1), 163-175. doi:https://doi.org/10.1007/s00170-019-04490-8

Baskoro, A. S., Riyanto, A., Arifardi, M. F., & Rupajati, P. (2020, 2020). Influence of Tools Diameters and Plunge depth on Mechanical Properties of Micro Friction Stir Spot Welding Materials A1100.

Cao, X., & Jahazi, M. (2009). Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy. Materials & design, 30(6), 2033-2042.

Dedeoğlu, O., & Güler Özgül, H. (2019). The Joint Properties of 5754 Aluminium Alloy by Friction Stir Spot Welding. Journal of Manufacturing and Materials Processing, 3(1), 8.

Esparza, J. A., Davis, W. C., Trillo, E. A., & Murr, L. E. (2002). Friction-stir welding of magnesium alloy AZ31B. Journal of materials science letters, 21(12), 917-920.

Gharacheh, M. A., Kokabi, A. H., Daneshi, G. H., Shalchi, B., & Sarrafi, R. (2006). The influence of the ratio of “rotational speed/traverse speed”(ω/v) on mechanical properties of AZ31 friction stir welds. International Journal of Machine Tools and Manufacture, 46(15), 1983-1987.

Kwon, Y. J., Shigematsu, I., & Saito, N. (2008). Dissimilar friction stir welding between magnesium and aluminum alloys. Materials Letters, 62(23), 3827-3829.

Lee, W. B., Yeon, Y. M., & Jung, S. B. (2003). Joint properties of friction stir welded AZ31B–H24 magnesium alloy. Materials Science and Technology, 19(6), 785-790.

Lukmanto, D., Muhayat, N., & Triyono, T. (2020). Pengaruh shoulder plunge depth dan panjang pin terhadap sifat fisik dan kekerasan pada sambungan friction stir spot welding aluminium 1100 dengan penambahan serbuk Zn. Jurnal Teknik Mesin Indonesia, 15(2), 13-20.

Matsuda, T., Ogaki, T., Hayashi, K., Iwamoto, C., Nozawa, T., Ohata, M., & Hirose, A. (2022). Fracture dominant in friction stir spot welded joint between 6061 aluminum alloy and galvannealed steel based on microscale tensile testing. Materials & Design, 213, 110344. doi:https://doi.org/10.1016/j.matdes.2021.110344

Mohammadi, J., Behnamian, Y., Mostafaei, A., Izadi, H., Saeid, T., Kokabi, A. H., & Gerlich, A. P. (2015). Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations. Materials Characterization, 101, 189-207.

Özgül, H. G., & Dedeoğlu, O. (2020). Investigations of the mechanical and microstructural effects of pinless tool geometry on friction stir spot welding process. Transactions of the Indian Institute of Metals, 73, 2281-2289.

Pareek, M., Polar, A., Rumiche, F., & Indacochea, J. E. (2007). Metallurgical evaluation of AZ31B-H24 magnesium alloy friction stir welds. Journal of materials engineering and performance, 16(5), 655-662.

Rao, H. M., Jordon, J. B., Barkey, M. E., Guo, Y. B., Su, X., & Badarinarayan, H. (2013). Influence of structural integrity on fatigue behavior of friction stir spot welded AZ31 Mg alloy. Materials Science and Engineering: A, 564, 369-380.

Sun, T., Wu, S., Shen, Y., Jin, J., Lu, J., & Qin, T. (2021). Investigation on Friction Stir Welding of Mg/Al T-Joints. Transactions of the Indian Institute of Metals, 74(12), 3045-3061. doi:https://doi.org/10.1007/s12666-020-02148-8

Tozaki, Y., Uematsu, Y., & Tokaji, K. (2007). Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. International Journal of Machine Tools and Manufacture, 47(15), 2230-2236.

Xunhong, W., & Kuaishe, W. (2006). Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy. Materials Science and Engineering: A, 431(1-2), 114-117.

Yaknesh, S., Sampathkumar, K., & Sevvel, P. (2022). Effect of tool pin geometry and process parameters during FSW of dissimilar alloys of Mg. Materials Research, 25.

Zhang, H., Lin, S. B., Wu, L., Feng, J. C., & Ma, S. L. (2006). Defects formation procedure and mathematic model for defect free friction stir welding of magnesium alloy. Materials & design, 27(9), 805-809.

Zhang, H., Wu, H., Huang, J., Sanbao, L. I. N., & Lin, W. U. (2007). Effect of welding speed on the material flow patterns in friction stir welding of AZ31 magnesium alloy. Rare Metals, 26(2), 158-162.

Zhang, Z., Yang, X., Zhang, J., Zhou, G., Xu, X., & Zou, B. (2011). Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Materials & Design, 32(8-9), 4461-4470.




DOI: https://doi.org/10.21831/jpvo.v5i2.60132

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Pendidikan Vokasi Otomotif

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Indexed by

 

Supported by:



RJI Main logo

Akreditasi Jurnal

 

 

 

Creative Commons License

Jurnal Pendidikan Vokasi Otomotif is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://journal.uny.ac.id/index.php/jpvo.

JPVO Stats