DEVELOPING INDUCTIVE THINKING KIT TO IMPROVE REPRESENTATION DATA AND SCIENTIFIC REASONING SKILLS

Yudi Guntara, Pascasarjana Universitas Negeri Yogyakarta, Indonesia
Insih Wilujeng, FMIPA UNY

Abstract


This study was aimed at producing and examining the effectiveness of physics learning kit of inductive thinking model which is reasonably to increase students’ data representations and scientific reasoning skills. This research uses R&D methods with 4D models that consists of define (need analysis of learning), design (designing the product draft), develop (expert appraisal, product field testing, and product revising), and disseminate (disseminating final product). The physics learning kit of inductive thinking model which is developed consists of syllabus, lesson plan, handout, worksheet and skills assessment sheet. The data were analyzed using the descriptive statistics, N-Gain analysis, multivariate test statistic Hotelling’s T2 and effect size analysis. The result of this research produced the physics learning kits of inductive thinking model which is reasonably used to increase students’ data representations and scientific reasoning skills with very good category based on experts, teachers and response of students. The learning kit is effective to increase students’ data representations and scientific reasoning skills significantly by effect size analysis with f = 0.180 for data representations skills and f = 0.115 for scientific reasoning skills.

PENGEMBANGAN PERANGKAT INDUCTIVE THINKING UNTUK PENINGKATAN KEMAMPUAN REPRESENTASI DATA DAN PENALARAN ILMIAH

Abstrak
Penelitian ini bertujuan untuk menghasilkan dan menguji efektivitas perangkat pembelajaran fisika model inductive thinking yang layak dalam meningkatkan kemampuan representasi data dan penalaran ilmiah siswa SMA. Penelitian menggunakan metode R&D dengan model 4D yang meliputi tahap define (analisis kebutuhan pembelajaran), design (perancangan draf produk), develop (penilaian ahli dan guru, uji coba produk, revisi produk), dan disseminate (penyebarluasan produk akhir). Produk perangkat pembelajaran fisika model inductive thinking yang dikembangkan ini terdiri dari silabus, RPP, handout, LKS dan lembar penilaian kemampuan. Teknik analisis data menggunakan statistik deskriptif, analisis N-Gain, uji statistik multivariat Hotelling’s T2 dan analisis effect size. Hasil penelitian menunjukkan bahwa perangkat pembelajaran fisika model inductive thinking layak digunakan dalam pembelajaran dengan kategori sangat baik berdasarkan penilaian ahli, guru, dan respons siswa. Perangkat yang dikembangkan efektif dalam meningkatkan kemampuan representasi data dan penalaran ilmiah berdasarkan analisis effect size dengan nilai f=0,180 terhadap kemampuan representasi data dan f=0,115 terhadap kemampuan penalaran ilmiah.


Keywords


inductive thinking, data representation, scientific reasoning

Full Text:

PDF

References


Acar, O. (2014). Scientific reasoning, con-ceptual knowledge, & achievement differences between prospective science teacher having a consistent mis-conception and those having a scientific conception in an argumentation-based guided inquiry course. Learning and Individual Differences, 30, 148-154.
Bao, L., Fang, K., Cai, T., Wang, J., Yang, L., Cui, L., ... Luo, Y. (2009). Learning of content knowledge and development of scientifc reasoning ability: a cross culture comparison. American Journal of Physics, 77, 1118-1123.
Cock, M. D. (2012). Representation use and strategy choice in physics problem solving. Physics Educations Research, 8, 1-15.
Cohen, J. (1992). Quantitative methods in psychology. Psychological Bulletin, 112,155-159. Diunduh dari: http://doi.apa.org/journals/bul/112/1/155.pdf.
Chesla, E., Hirsch, N., Grove, M., Matic, J., Haste, K., Barker, J., & Ivers, C. (2003). ACT exam success in only 6 stepps. New York: Learning Express.
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (2012). Categorization and representation of physics problem by experts and novices. Cognitive Science, 5, 121-152.
Dong, H. N., & Rebello, N. S. (2011). Students’ difficulties with multiple representations in introductory mechanics. US-China Education Review, 8, 559-569.
Guttersrud, O., & Angell, C., (2010). Mathematics in physics: upper secon-dary physics students’ competency to describe phenomena applying mathe-matical and graphical representations. Proceedings of selected papers of the GIREP - ICPE-MPTL International conference (pp. 95-101).
Hake, R. R. (1999). Analyzing change/gain scores (Unpublished). Diunduh dari http://www. physics. indiana. edu/~ sdi/AnalyzingChange-Gain. pdf.
Heuvelen, A.V., & Xueli, Z. (2001). Multiple representations of work–energy processes. American Journal of Physics, 69, 184-194.
Hwang, W. Y., Chen, N. S., Dung, J. J., & Yang, Y. L. (2007). Multiple representation skills and creativity effects on mathematical problem solving using a multimedia whiteboard system. Educational Technology & Society, 10, 191-212.
Ibrahim, B., & Rebello, N. S. (2012). Representational task formats and problem solving strategies in kinematics and work. Physics Educations Research, 8, 1-19.
Joyce, B., Weil, M., & Calhoun, E. (2003). Models of teaching (5th ed.). New Delhi: Prentice Hall of India.
Kurniawan, T. J., & Siswanto, J. (2012). Pengaruh penggunaan lembar kerja dengan pendekatan induktif terhadap kemampuan berpikir kritis dan kreatif siswa dalam pembelajaran fisika. Jurnal Penelitian Pembelajaran, 3, 83-89.
Lawson, A. E. (1978). The development and validation of a classroom test of formal reasoning. Journal of Research in Science Teaching, 15(1), 11-24.
Martadiputra, B. A. P. (2013). Modifikasi model eliciting activities dengan meng-gunakan didactical design research untuk meningkatkan kemampuan berpikir statis. Jurnal Kependidikan. 43(2), 95-106.
Narjaikaew, P., Emarat, N., Arayathantikul, K., & Cowie, B. (2010). Magnetism teaching sequences based on an inductive approach for first-year Thai University science students. International Journal of Science and Mathematics Education. 8, 891-910.
Neumann, K., Viering, T., Boone, W.J., & Fischer, H.E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50, 162-188.
Nurohman, S. & Suyoso. (2014). Pengem-bangan modul elektronik berbasis web sebagai media pembelajaran fisika. Jurnal Kependidikan, 44(1), 73-88.
Osborne, J. (2013). The 21st century challenge for science education: assessing scientific reasoning. Thinking Skills and Creativity, 10, 265-279.
Patel, M. (2015). Developing a teaching package in general science for class X using inductive thinking model. International Journal of Research in Humanities & Social Sciences,3,13-18.
Punet, W., & Pooja, W. (2013). Effect of integrated syntax of advance organizer model and inductive thinking model on attitude towards mathematics and reaction towards integration of models. International Journal of Education and Psychological Research, 3, 15-20.
Putri, A. M., Mahardika, K., & Nuriman. (2012). Model pembelajaran free inquiry (inkuiri bebas) dalam pembe-lajaran multi representasi fisika di MAN 2 Jember. Jurnal Pembelajaran Fisika. 1, 1-4.
Renninger, K. A. (2009). Interest and identity development in instruction: an inductive model. Educational Psychologist. 44, 105-118.
Sejpal, K. (2013). Models of teaching: the way of learning. International Journal of Research in Humanities & Social Sciences. 2, 18-24.
Stevens, J. (2009). Apllied multivariate statistics for the social sciences. New Jersey: Lawrence Elbaum Associates.
Tajudin, N. M., Saad, N. S., Rahman, N. A.,Yahaya, A., Alimon, H., Dollah, M. U., & Karim, M. M. A. (2012). Mapping the level of scientific reasoning skills to instructional methodologies among malysian science-mathematics-engineering undergraduates The 5th International Conference on Research and Education in Mathematics, 1450, 262-265.
Thiagarajan, S., Semmel, D. S., & Semmel, M. I. (1974). Instructional development for training teacher of exceptional children. Minnesota: Indiana University.
Walia, P., & Walia, P. (2014). Effect of integrated syntax of advance organizer model and inductive thinking model on attitude towards mathematics and reaction towards integration of models. International Journal of Educationand Psychological Research, 3, 15-20.
Winarti, A., Yuanita, L., & Nur, M. (2015). Pengembangan model pembelajaran “CERDAS” berbasis teori multiple intelligences pada pembelajaran IPA. Jurnal Kependidikan, 45(1), 16-28.
Ya, W. L., & Hsiao, C. S. (2009). Enhancing eight grade students’ scientifc conceptual change and scientific reasoning through a web-based learning program. Educational Technology & Society, 12, 228-240.




DOI: https://doi.org/10.21831/jk.v2i2.14106

Refbacks



Copyright (c) 2018 JURNAL KEPENDIDIKAN

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

p-ISSN: 2580-5525 || e-ISSN: 2580-5533

Indexed by:

          


Creative Commons License

Jurnal Kependidikan by http://journal.uny.ac.id/index.php/jk is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View Journal Stats