CHARACTERISTICS OF HARDNESS AND MICROSTRUCTURE OF RECYCLED PISTONS MANUFACTURED BY SAND CASTING PROCESS

Authors

  • Bambang Hari Priyambodo Department of Mechanical Engineering, Universitas Gadjah Mada, Indonesia
  • Handoko Department of Mechanical Engineering, Vocational School, Universitas Gadjah Mada, Indonesia
  • Felixtianus Eko Wismo Winarto Department of Mechanical Engineering, Vocational School, Universitas Gadjah Mada, Indonesia
  • Amida Tri Andani Department of Mechanical Engineering, Vocational School, Universitas Gadjah Mada, Indonesia
  • Martinus Heru Palmiyanto Mechanical Engineering Education Department, Universitas Negeri Yogyakarta, Indonesia
  • Kaleb Priyanto Mechanical Engineering Education Department, Universitas Negeri Semarang, Indonesia

Keywords:

Recycled piston, Vickers hardness, Piston waste, Sand casting, Microstructure

Abstract

Motorcycle piston waste, made from aluminum, is often poorly managed despite its advantages in corrosion resistance and thermal conductivity. This study aims to enhance the economic value of piston waste through recycling using the sand casting method. The melting process was conducted at a temperature of 843°C, followed by casting into sand molds. The recycled product is intended for use as a ship propeller component. Tests performed included Vickers hardness testing and microstructural analysis to evaluate the mechanical properties and material characteristics. The results showed that the recycled material exhibited an average hardness of 77.2 kg/mm², consistent with standard aluminum hardness. Microstructural analysis revealed the presence of porosity which may affect mechanical strength; however, this porosity did not reduce the material's resistance to mechanical damage and provided good toughness. Based on these findings, it can be concluded that motorcycle piston waste recycled by sand casting at 843 °C has potential for use in manufacturing high-value components such as ship propellers, considering the hardness quality and microstructural characteristics of the material.

References

Sukahar, Hafid, A., & Suparja. (2024). Analisis Perbandingan Sifat Fisis dan Mekanis pada Piston Motor Produk China (Kanzen) dan Motor Produk Jepang (Honda GL). Jurnal Mekanikasista, Vol. 11 No. 2.

Shi, M., Li, Y., & Ni, P. (2022). Recycling valuable elements from aluminum dross. International Journal of Environmental Science and Technology,19:12069–12078.

Andrijono, D., & Sufiyanto. (2018). Bimtek Mutu Produk Cor Baling-Baling Kapal Nelayan Hasil Cetakan Pasir dengan Bahan Dasar Skrap Aluminium bagi IKM Disperindag Kota Pasuruan. Jurnal ABDIMAS Unmer Malang, Vol. 3, No. 2.

Nugroho, B. S., Budiarto, U., & Kiryanto, K. (2022). Analisa Kekuatan Material Aluminium Daur Ulang Dari Bahan Velg dan Piston Motor sebagai Bahan Komponen Jendela Kapal. Jurnal Teknik Perkapalan, vol. 10, no. 2, pp. 98-105.

Priyambodo, B. H., Yaqin, R. I., Fattah, R. N., & Slamet, S. (2024). Pemanfaatan dan Rekayasa Limbah Piston dengan Metode Shot Peening sebagai Bahan Alternatif Propeler Perahu Nelayan. Aurelia Journal, Vol. 6, No. 2.

Samudro, M. A. (2024). Perhitungan Kekuatan Mekanik dari Pemanfaatan Limbah Aluminium untuk Pembuatan Bracket pada Mesin Tempel Kapal Patroli. INOVTEK Polbeng, vol. 14, no. 02, pp. 216-227.

Partono, P., Prakoso, D. A., Masyrukan, Wiyono, S., Pratiwi D. A., Kultsum, U., Istiqama, N. A., & Gustiani, D. (2024). Methods of gravity die casting and gravity investment casting on density, porosity, microstructure, and hardness in aluminum casting. AIP Conf. Proc. 2838, 060011.

Samuel, A., Zedan, Y., Doty, H., Songmene, V., Samuel, F. H. (2021). A Review Study on the Main Sources of Porosity in Al-Si Cast Alloys. Advances in Materials Science and Engineering, Issue 1 1921603.

Permata, A. N. S., Nayaka, M. D., Zulhazmi, A., et al. (2024). Corrosion and Microstructure on the Casting Product Propeller Shaft Model of Al6063 Aluminum Alloy Base Materials. The 18th International Conference.

Kim, M. S., & Kim, J. (2024). Development of Low-Pressure Die-Cast Al-Zn-Mg-Cu Alloy Propellers-Part Ⅰ: Hot Tearing Simulations for Alloy Optimization. MDPI Materials.

Louis, S., & Louis, P. P. (2020). Experimental study on strength comparison of light weight aluminium alloy propeller blade with metal propeller blade. IOP Conference Series: Materials Science and Engineering.

Mat Nasir, M. F. (2008). Cavitation Failure of Local Made Propellers and Suggestion for Improvement. Utp.edu.my.

Akhyar, A., Iqbal, I., Bahi, M., & Farhan, A. F. (2023). Numerical-hydrodynamic analysis, vickers hardness, and tensile test of cast-brass alloy for boat propellers. Jurnal Polimesin.

Endramawan, T., Sifa, A., & Dionisius, F. (2020). Characteristics of hardness at local propellers with variations of timing by using sandblasting method. IOP Conference Series: Materials Science and Engineering, vol. 850, no. 1, p. 012038.

Parameswaran, P., Rameshbabu, A. M., et al. (2018). Study of the corrosion properties in a hot forged Cu-Al-Ni alloy with added Cr. Journal of Materials Engineering and Performance, vol. 27, no. 12, pp. 5557-5567.

Tang, C. H., Cheng, F. T., & Man, H. C. (2004). Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting. Surface and Coatings Technology, vol. 177, no. 1, pp. 16-24.

Hsu, C. Y., Huang, C. K., & Tzou, G. J. (2008) Using metallic resin and aluminum alloy molds to manufacture propellers with RP/RT technique. Emerald, vol. 16, no. 3, pp. 154-160.

Du, S., Zhang, S., Wang, J., et al. (2024). Sustainable recycling of aluminum scraps to recycled aerospace-grade 7075 aluminum alloy sheets. ScienceDirect, pp. 1-8.

Stelter, M., & Morgenstern, G. (2007). Investigations of Possibilities for Cleaning of Aluminium Bronze for the Recycling of Cast Alloys. Kupferinstitut, pp. 1-9.

Biegler, M., et al. (2021). Analysis and recycling of bronze grinding waste to produce maritime components using directed energy deposition. WLT, pp. 1-15.

Altunsaray, E., Sözen, A., & Doğru, A. (2021). Structural Performance of Lightweight Ship Propellers with Sustainable Materials and Additive Manufacturing. SSRN, pp. 1-12.

Downloads

Published

2025-10-30

How to Cite

Priyambodo, B. H., Handoko, Felixtianus Eko Wismo Winarto, Amida Tri Andani, Martinus Heru Palmiyanto, & Kaleb Priyanto. (2025). CHARACTERISTICS OF HARDNESS AND MICROSTRUCTURE OF RECYCLED PISTONS MANUFACTURED BY SAND CASTING PROCESS. Jurnal Dinamika Vokasional Teknik Mesin, 10(2). Retrieved from http://journal.uny.ac.id/index.php/dynamika/article/view/86156

Issue

Section

Articles

Citation Check