ELECTROCHEMICAL PERFORMANCES OF NITROGEN-DOPED CARBON/MNO2 COMPOSITE SUPERCAPACITOR ELECTRODE IN KI-ADDED NA2SO4 ELECTROLYTE

Sutarsis Sutarsis, Institut Teknologi Sepuluh Nopember, Indonesia
Demas Muhammad Abyan, Institut Teknologi Sepuluh Nopember, Indonesia
Fahrul Ardian Firmanda Kussuma, Institut Teknologi Sepuluh Nopember, Indonesia
Yusuf Pradesar, Institut Teknologi Sepuluh Nopember, Indonesia
Agung Purniawan, Institut Teknologi Sepuluh Nopember, Indonesia

Abstract


In this study, Nitrogen-doped Activated Carbons (NAC) with different Nitrogen concentrations (NAC1, NAC2, NAC3) and Manganese Dioxide (MnO2) were composited to make the hybrid active material for supercapacitor electrodes to improve the energy density of NAC by adding the pseudo-redox capacitive properties of NAC/MnO2 composite electrode. NAC active material was made from the pyrolyzing biomass carbon and Polyaniline mixture at 800 °C in a nitrogen atmosphere for 2 hours. NAC/MnO2 hybrid material was synthesized by heating NAC: MnO2 with a ratio of 5:1 at 400 °C for 2 hours. Peaks analysis of X-ray diffraction of NAC/MnO2 powder shows that the MnO2 phase was formed as a composite with NAC. The electrochemical performance of the NAC3/MnO2 electrode exhibited the highest capacitance of 168 Fg-1 at a scan rate of 5 mVs-1 in Potassium Iodide (KI)-added Na2SO4 electrolyte. According to the Cycle Voltammetry (CV) measurement, the NAC3/MNO2 composite electrode shows hybrid capacitive behavior consisting of pseudo-redox and double-layer electrostatic energy storage mechanisms in KI-added Na2SO4 electrolyte. NAC3/MnO2 composite electrode demonstrates a high energy density of 22 Whkg-1 at 5 mVs-1.

Keywords


Aqueous Electrolyte, Activated Carbon, Nitrogen Doping, Supercapacitor

Full Text:

109-120 (PDF)

References


Dewan Energi Nasional, Energi Indonesia 2019, Sekretariat Jenderal Dewan Energi Nasional, 2021. Dewan Energi Nasional | Publikasi (den.go.id).

A.R. Nurohmah, "Synthesis and Characterization of NMC622 Cathode Material Modified by Various Cheap and Abundant Transition Metals for Li-ion Batteries," EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 09 (02) 427-437 (2022). doi: https://doi.org/10.5109/4794168.

K. Wang, W. Wang, L. Wang, and L. Li, An improved SOC control strategy for electric vehicle hybrid energy storage systems, Energies (Basel), 13 (20), (2020). doi: 10.3390/en13205297

F. Naseri, E. Farjah, and T. Ghanbari, an efficient regenerative braking system based on battery/supercapacitor for electric, hybrid, and plug-in hybrid electric vehicles with BLDC motor, IEEE Transactions on Vehicular Technology, 66 (5) 3724–3738 (2017). doi: 10.1109/TVT.2016.2611655

Y. He, S. Du, H. Li, Q. Cheng, V. Pavlinek, and P. Saha, MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes, Journal of Solid-State Electrochemistry, 20 (5) 1459–1467 (2016). doi: 10.1007/s10008-016-3162-2

E. Redondo, L. W. L. Fevre, R. Fields, R. Todd, A. J. Forsyth, and R. A. W. Dryfe, Enhancing supercapacitor energy density by mass-balancing of graphene composite electrodes, Electrochimica Acta, 360 (2020). doi: 10.1016/j.electacta.2020.136957

N. Saeidi and M. N. Lotfollahi, Effects of powder activated carbon particle size on adsorption capacity and mechanical properties of the semi activated carbon fiber, Fibers and Polymers, 16 (3) 543–549 (2015). doi: 10.1007/s12221-015-0543-6

D. Salinas-Torres, R. Ruiz-Rosas, E. Morallón, and D. Cazorla-Amorós, Strategies to enhance the performance of electrochemical capacitors based on carbon materials, Frontiers in Materials, 6 (2019). doi: 10.3389/fmats.2019.00115

F. Taufani, M.J Pasaribu, B.S.R Romaji, Y. Rahmawati, The Synthesis of Activated Carbon from Waste Tyre as Fuel Cell Catalyst Support, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 09 (02) 412-420 (2022). doi: https://doi.org/10.5109/4794166

N. Vangapally, K. Kumar, A. Kumar, S.K. Martha, Charge storage behavior of sugar derived carbon/MnO2 composite electrode material for high-performance supercapacitors, Journal of Alloys and Compounds 893 (2022) 162232. doi: https://doi.org/10.1016/j.jallcom.2021.162232

Abbas, R. Raza, I. Shabbir, and A. G. Olabi, Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review, Journal of Science: Advanced Materials and Devices, 4 (3) 341–352 (2019). doi: 10.1016/j.jsamd.2019.07.007

J.R. Choi, J.W. Lee, G. Yang, Y.J. Heo, S.J. Park, Activated Carbon/MnO2 Composites as Electrode for High-Performance Supercapacitors, Catalysts 2020, 10, 256. doi: 10.3390/catal10020256

M. Jing, T. Wu, Y. Zhou, X. Li, and Y. Liu, Nitrogen-Doped Graphene via In-situ Alternating Voltage Electrochemical Exfoliation for Supercapacitor Application, Frontiers in Chemistry, 8 (2020). doi: 10.3389/fchem.2020.00428.

P. Konnerth, D. Jung, J. W. Straten, K. Raffelt, and A. Kruse, Metal oxide-doped activated carbons from bakery waste and coffee grounds for application in supercapacitors, Materials Science for Energy Technologies, 4 69–80 (2021). doi: 10.1016/j.mset.2020.12.008

T. Huang, Z. Qiu, D. Wu, Z. Hu, Bamboo-Based Activated Carbon@MnO2 Nanocomposites for Flexible High-Performance Supercapacitor Electrode Materials, Int. J. Electrochem. Sci., Vol. 10, 2015. doi:https://doi.org/10.1016/S1452-3981(23)06721-4

H. S. Roy, M. M. Islam, M. Y. A. Mollah, and M. A. B. H. Susan, Polyaniline-MnO2 composites prepared in-situ during oxidative polymerization of aniline for supercapacitor applications, in Materials Today: Proceedings, 2020, 29 1013–1019 (2020). doi: 10.1016/j.matpr.2020.04.635

R. Kumari, A. Sahai, and N. Goswami, Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles, Progress in Natural Science: Materials International, 25 (4) 300–309 (2015). doi: 10.1016/j.pnsc.2015.08.003

L. Hlekelele, P. J. Franklyn, P. K. Tripathi, and S. H. Durbach, Morphological and crystallinity differences in nitrogen-doped carbon nanotubes grown by chemical vapour deposition decomposition of melamine over coal fly ash, RSC Advances, 6 (80) 76773–76779 (2016). doi: 10.1039/c6ra16858b.

R. Yang, T. Tao, Y. Dai, Z. Chen, X. Zhang, and Q. Song, Green synthesis of bi-component Mn3O4-MnO2 nanorods and enhanced catalytic properties, Catalysis Communications, 60 96–99 (2015). doi: 10.1016/j.catcom.2014.11.028

L. Yang, C. Wang, L. Yao, W. Jiang, X. Jiang, and J. Li, Removal of manganous dithionate (MnS2O6) with MnO2 from the desulfurization manganese slurry, RSC Advances, 10 (3) 1430–1438 (2020). doi: 10.1039/c9ra09810k

E. Taer, A. Putri, R. Farma, Awitdrus, R. Taslim, Apriwandi, Agustino, D.A. Yusra, The effect of potassium iodide (KI) addition to aqueous-based electrolyte (sulfuric acid/H2SO4) for increase the performance of supercapacitor cells, Materials Today: Proceedings 44 (2021)3241–3244. doi: https://doi.org/10.1016/j.matpr.2020.11.447

D. Xu, W. Hu, X.N. Sun, P. Cui, X.Y. Chen, Redox additives of Na2MoO4 and KI: Synergistic effect and the improved capacitive performances for carbon-based supercapacitors, J. Power Sources 341 (2017) 448–456, https://doi.org/ 10.1016/j.jpowsour.2016.12.031

M. Sarno, Nanotechnology in energy storage: the supercapacitors, in Studies in Surface Science and Catalysis, 179 431–458 (2020). doi: https://doi.org/10.1016/B978-0-444-64337-7.00022-7

P. Charoen-amornkitt, T. Suzuki, and S. Tsushima, Ohmic resistance and constant phase element effects on cyclic voltammograms using a combined model of mass transport and equivalent circuits, Electrochimica Acta, 258 433–441 (2017). doi: 10.1016/j.electacta.2017.11.079

H. Gul, A. ul H. A. Shah, and S. Bilal, Achieving ultrahigh cycling stability and extended potential window for supercapacitors through asymmetric combination of conductive polymer nanocomposite and activated carbon, Polymers (Basel), 11 (10) (2019). doi: 10.3390/polym11101678

K. Fic, G. Lota, M. Meller, and E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors, Energy and Environmental Science, 5 (2) 5842–5850 (2012). doi: 10.1039/c1ee02262h

S. Pappu, T. N. Rao, S. K. Martha, and S. v. Bulusu, Electrodeposited Manganese Oxide based Redox Mediator Driven 2.2 V High Energy Density Aqueous Supercapacitor, Energy, 243 (2022). doi:10.1016/j.energy.2021.122751

P. Haldar, Achieving wide potential window and high capacitance for supercapacitors using different metal oxides (viz.: ZrO2, WO3 and V2O5) and their PANI/graphene composites with Na2SO4 electrolyte, Electrochimica Acta, 381 (2021). doi: 10.1016/j.electacta.2021.138221

Chen Ye, Zhang Mi Lin, and Shi Zhao Hui, Electrochemical and Capacitance Properties of Rod-Shaped MnO2 for Supercapacitor, Journal of The Electrochemical Society, 152 (6) A1272-A1278, (2005). Doi: 10.1149/1.1904912

Matilde Eredia, Sebastiano Bellani, Marilena I. Zappia, Luca Gabatel, Valerio Galli, Ahmad Bagheri, Hossein Beydaghi, Gabriele Bianca, Irene Conticello, Vittorio Pellegrini, and Francesco Bonaccorso, High-energy density aqueous supercapacitors: The role of electrolyte pH and KI redox additive, APL Mater. 10, 101102 (2022). doi: 10.1063/5.0106932




DOI: https://doi.org/10.21831/dinamika.v9i2.77816

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Dinamika Vokasional Teknik Mesin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Lisensi Creative Commons 

Jurnal Dinamika Vokasional Teknik Mesin by http://journal.uny.ac.id/index.php/dynamika was distributed under a Creative Commons Attribution 4.0 International License.


 

 

 

in collaboration with:

 

 

View My Stats