ELECTROCHEMICAL PERFORMANCES OF NITROGEN-DOPED CARBON/MNO2 COMPOSITE SUPERCAPACITOR ELECTRODE IN KI-ADDED NA2SO4 ELECTROLYTE
Demas Muhammad Abyan, Institut Teknologi Sepuluh Nopember, Indonesia
Fahrul Ardian Firmanda Kussuma, Institut Teknologi Sepuluh Nopember, Indonesia
Yusuf Pradesar, Institut Teknologi Sepuluh Nopember, Indonesia
Agung Purniawan, Institut Teknologi Sepuluh Nopember, Indonesia
Abstract
Keywords
Full Text:
109-120 (PDF)References
Dewan Energi Nasional, Energi Indonesia 2019, Sekretariat Jenderal Dewan Energi Nasional, 2021. Dewan Energi Nasional | Publikasi (den.go.id).
A.R. Nurohmah, "Synthesis and Characterization of NMC622 Cathode Material Modified by Various Cheap and Abundant Transition Metals for Li-ion Batteries," EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 09 (02) 427-437 (2022). doi: https://doi.org/10.5109/4794168.
K. Wang, W. Wang, L. Wang, and L. Li, An improved SOC control strategy for electric vehicle hybrid energy storage systems, Energies (Basel), 13 (20), (2020). doi: 10.3390/en13205297
F. Naseri, E. Farjah, and T. Ghanbari, an efficient regenerative braking system based on battery/supercapacitor for electric, hybrid, and plug-in hybrid electric vehicles with BLDC motor, IEEE Transactions on Vehicular Technology, 66 (5) 3724–3738 (2017). doi: 10.1109/TVT.2016.2611655
Y. He, S. Du, H. Li, Q. Cheng, V. Pavlinek, and P. Saha, MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes, Journal of Solid-State Electrochemistry, 20 (5) 1459–1467 (2016). doi: 10.1007/s10008-016-3162-2
E. Redondo, L. W. L. Fevre, R. Fields, R. Todd, A. J. Forsyth, and R. A. W. Dryfe, Enhancing supercapacitor energy density by mass-balancing of graphene composite electrodes, Electrochimica Acta, 360 (2020). doi: 10.1016/j.electacta.2020.136957
N. Saeidi and M. N. Lotfollahi, Effects of powder activated carbon particle size on adsorption capacity and mechanical properties of the semi activated carbon fiber, Fibers and Polymers, 16 (3) 543–549 (2015). doi: 10.1007/s12221-015-0543-6
D. Salinas-Torres, R. Ruiz-Rosas, E. Morallón, and D. Cazorla-Amorós, Strategies to enhance the performance of electrochemical capacitors based on carbon materials, Frontiers in Materials, 6 (2019). doi: 10.3389/fmats.2019.00115
F. Taufani, M.J Pasaribu, B.S.R Romaji, Y. Rahmawati, The Synthesis of Activated Carbon from Waste Tyre as Fuel Cell Catalyst Support, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 09 (02) 412-420 (2022). doi: https://doi.org/10.5109/4794166
N. Vangapally, K. Kumar, A. Kumar, S.K. Martha, Charge storage behavior of sugar derived carbon/MnO2 composite electrode material for high-performance supercapacitors, Journal of Alloys and Compounds 893 (2022) 162232. doi: https://doi.org/10.1016/j.jallcom.2021.162232
Abbas, R. Raza, I. Shabbir, and A. G. Olabi, Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review, Journal of Science: Advanced Materials and Devices, 4 (3) 341–352 (2019). doi: 10.1016/j.jsamd.2019.07.007
J.R. Choi, J.W. Lee, G. Yang, Y.J. Heo, S.J. Park, Activated Carbon/MnO2 Composites as Electrode for High-Performance Supercapacitors, Catalysts 2020, 10, 256. doi: 10.3390/catal10020256
M. Jing, T. Wu, Y. Zhou, X. Li, and Y. Liu, Nitrogen-Doped Graphene via In-situ Alternating Voltage Electrochemical Exfoliation for Supercapacitor Application, Frontiers in Chemistry, 8 (2020). doi: 10.3389/fchem.2020.00428.
P. Konnerth, D. Jung, J. W. Straten, K. Raffelt, and A. Kruse, Metal oxide-doped activated carbons from bakery waste and coffee grounds for application in supercapacitors, Materials Science for Energy Technologies, 4 69–80 (2021). doi: 10.1016/j.mset.2020.12.008
T. Huang, Z. Qiu, D. Wu, Z. Hu, Bamboo-Based Activated Carbon@MnO2 Nanocomposites for Flexible High-Performance Supercapacitor Electrode Materials, Int. J. Electrochem. Sci., Vol. 10, 2015. doi:https://doi.org/10.1016/S1452-3981(23)06721-4
H. S. Roy, M. M. Islam, M. Y. A. Mollah, and M. A. B. H. Susan, Polyaniline-MnO2 composites prepared in-situ during oxidative polymerization of aniline for supercapacitor applications, in Materials Today: Proceedings, 2020, 29 1013–1019 (2020). doi: 10.1016/j.matpr.2020.04.635
R. Kumari, A. Sahai, and N. Goswami, Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles, Progress in Natural Science: Materials International, 25 (4) 300–309 (2015). doi: 10.1016/j.pnsc.2015.08.003
L. Hlekelele, P. J. Franklyn, P. K. Tripathi, and S. H. Durbach, Morphological and crystallinity differences in nitrogen-doped carbon nanotubes grown by chemical vapour deposition decomposition of melamine over coal fly ash, RSC Advances, 6 (80) 76773–76779 (2016). doi: 10.1039/c6ra16858b.
R. Yang, T. Tao, Y. Dai, Z. Chen, X. Zhang, and Q. Song, Green synthesis of bi-component Mn3O4-MnO2 nanorods and enhanced catalytic properties, Catalysis Communications, 60 96–99 (2015). doi: 10.1016/j.catcom.2014.11.028
L. Yang, C. Wang, L. Yao, W. Jiang, X. Jiang, and J. Li, Removal of manganous dithionate (MnS2O6) with MnO2 from the desulfurization manganese slurry, RSC Advances, 10 (3) 1430–1438 (2020). doi: 10.1039/c9ra09810k
E. Taer, A. Putri, R. Farma, Awitdrus, R. Taslim, Apriwandi, Agustino, D.A. Yusra, The effect of potassium iodide (KI) addition to aqueous-based electrolyte (sulfuric acid/H2SO4) for increase the performance of supercapacitor cells, Materials Today: Proceedings 44 (2021)3241–3244. doi: https://doi.org/10.1016/j.matpr.2020.11.447
D. Xu, W. Hu, X.N. Sun, P. Cui, X.Y. Chen, Redox additives of Na2MoO4 and KI: Synergistic effect and the improved capacitive performances for carbon-based supercapacitors, J. Power Sources 341 (2017) 448–456, https://doi.org/ 10.1016/j.jpowsour.2016.12.031
M. Sarno, Nanotechnology in energy storage: the supercapacitors, in Studies in Surface Science and Catalysis, 179 431–458 (2020). doi: https://doi.org/10.1016/B978-0-444-64337-7.00022-7
P. Charoen-amornkitt, T. Suzuki, and S. Tsushima, Ohmic resistance and constant phase element effects on cyclic voltammograms using a combined model of mass transport and equivalent circuits, Electrochimica Acta, 258 433–441 (2017). doi: 10.1016/j.electacta.2017.11.079
H. Gul, A. ul H. A. Shah, and S. Bilal, Achieving ultrahigh cycling stability and extended potential window for supercapacitors through asymmetric combination of conductive polymer nanocomposite and activated carbon, Polymers (Basel), 11 (10) (2019). doi: 10.3390/polym11101678
K. Fic, G. Lota, M. Meller, and E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors, Energy and Environmental Science, 5 (2) 5842–5850 (2012). doi: 10.1039/c1ee02262h
S. Pappu, T. N. Rao, S. K. Martha, and S. v. Bulusu, Electrodeposited Manganese Oxide based Redox Mediator Driven 2.2 V High Energy Density Aqueous Supercapacitor, Energy, 243 (2022). doi:10.1016/j.energy.2021.122751
P. Haldar, Achieving wide potential window and high capacitance for supercapacitors using different metal oxides (viz.: ZrO2, WO3 and V2O5) and their PANI/graphene composites with Na2SO4 electrolyte, Electrochimica Acta, 381 (2021). doi: 10.1016/j.electacta.2021.138221
Chen Ye, Zhang Mi Lin, and Shi Zhao Hui, Electrochemical and Capacitance Properties of Rod-Shaped MnO2 for Supercapacitor, Journal of The Electrochemical Society, 152 (6) A1272-A1278, (2005). Doi: 10.1149/1.1904912
Matilde Eredia, Sebastiano Bellani, Marilena I. Zappia, Luca Gabatel, Valerio Galli, Ahmad Bagheri, Hossein Beydaghi, Gabriele Bianca, Irene Conticello, Vittorio Pellegrini, and Francesco Bonaccorso, High-energy density aqueous supercapacitors: The role of electrolyte pH and KI redox additive, APL Mater. 10, 101102 (2022). doi: 10.1063/5.0106932
DOI: https://doi.org/10.21831/dinamika.v9i2.77816
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Dinamika Vokasional Teknik Mesin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Dinamika Vokasional Teknik Mesin by http://journal.uny.ac.id/index.php/dynamika was distributed under a Creative Commons Attribution 4.0 International License.
View My Stats