TRAIN WHEEL OUT-OF-ROUNDNESS (OOR) AND MACHINE LEARNING-VIBRATION BASED FAULT DIAGNOSIS: A REVIEW

Yasser Yusran, Institut Teknologi Bandung, Indonesia
I Wayan Suweca, Institut Teknologi Bandung, Indonesia
Yunendar Aryo Handoko, Institut Teknologi Bandung, Indonesia

Abstract


This article aims to give a complete review of previous and current research on numerous types of out-of-roundness (OOR) failures in train wheels, as well as diagnostic approaches based on machine learning and vibration data. The study provides a comprehensive overview of the current state of research by categorizing reviews into three primary domains: (1) types of OOR failures in train wheels, (2) fault diagnosis methodologies, and (3) the use of machine learning and vibration data to diagnose train wheel OOR failures. Initially, the study investigates the characteristics, causes, and consequences of railway wheel OOR failures, including their impact on vibrations. It then dives further into diagnostic methods, comparing the effectiveness of statistical methods to machine learning-based methods for diagnosing failures. Furthermore, the study addresses current advances in machine learning and vibration-based diagnostic methods to diagnose train wheel OOR failures, providing information on their applications and results. This article highlights that by utilizing machine learning methods with vibration data offers a promising way for accurately diagnosing OOR faults in train wheels and predicting their potential failure and remaining useful life, resulting to enhanced maintenance efficiency and less downtime.

Keywords


fault diagnosis; machine learning; train wheel out-of-roundness; vibration

Full Text:

10-25 (PDF)

References


Abid, A., Khan, M. T., & Iqbal, J. (2021). A review on fault detection and diagnosis techniques: basics and beyond. Artificial Intelligence Review, 54(5), 3639–3664. https://doi.org/10.1007/s10462-020-09934-2

Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Applied Sciences (Switzerland), 12(16). https://doi.org/10.3390/app12168081

Bracciali, A., & Cascini, G. (1997). Detection of corrugation and wheelflats of railway wheels using energy and cepstrum analysis of rail acceleration. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 211(2), 109–116. https://doi.org/10.1243/0954409971530950

Braghin, F., Bruni, S., & Lewis, R. (2009). 6 - Railway wheel wear. In R. Lewis & U. Olofsson (Eds.), Wheel–Rail Interface Handbook (pp. 172–210). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845696788.1.172

Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. da P., Basto, J. P., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers and Industrial Engineering, 137(September), 106024. https://doi.org/10.1016/j.cie.2019.106024

Chi, Z., Lin, J., Chen, R., & Huang, S. (2020). Data-driven approach to study the polygonization of high-speed railway train wheel-sets using field data of China’s HSR train. Measurement: Journal of the International Measurement Confederation, 149, 107022. https://doi.org/10.1016/j.measurement.2019.107022

Chiello, O., Le Bellec, A., Pallas, M. A., Munoz, P., & Janillon, V. (2019). Characterisation of wheel/rail roughness and track decay rates on a tram network. INTER-NOISE 2019 MADRID - 48th International Congress and Exhibition on Noise Control Engineering. https://doi.org/https://hal.science/hal-02305430

Chong, S. Y., Lee, J. R., & Shin, H. J. (2010). A review of health and operation monitoring technologies for trains. Smart Structures and Systems, 6(9), 1079–1105. https://doi.org/10.12989/sss.2010.6.9.1079

Çinar, Z. M., Nuhu, A. A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability (Switzerland), 12(19). https://doi.org/10.3390/su12198211

Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., & Barbosa, J. (2020). Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Computers in Industry, 123, 103298. https://doi.org/10.1016/j.compind.2020.103298

Escobet, T., Bregon, A., Pulido, B., & Puig, V. (2019). Fault Diagnosis of Dynamic Systems: Quantitative and Qualitative Approaches. In Fault Diagnosis of Dynamic Systems: Quantitative and Qualitative Approaches. https://doi.org/10.1007/978-3-030-17728-7

Fadzail, N. F., Mat Zali, S., Mid, E. C., & Jailani, R. (2022). Application of Automated Machine Learning (AutoML) Method in Wind Turbine Fault Detection. Journal of Physics: Conference Series, 2312(1). https://doi.org/10.1088/1742-6596/2312/1/012074

Fröhling, R., Spangenberg, U., & Reitmann, E. (2019). Root cause analysis of locomotive wheel tread polygonisation. Wear, 432–433(April). https://doi.org/10.1016/j.wear.2019.05.026

Gao, R., Wang, L., Teti, R., Dornfeld, D., Kumara, S., Mori, M., & Helu, M. (2015). Cloud-enabled prognosis for manufacturing. CIRP Annals - Manufacturing Technology, 64(2), 749–772. https://doi.org/http://dx.doi.org/10.1016/j.cirp.2015.05.011

Gonzalez-Jimenez, D., Del-Olmo, J., Poza, J., Garramiola, F., & Madina, P. (2021). Data-driven fault diagnosis for electric drives: A review. Sensors, 21(12). https://doi.org/10.3390/s21124024

Guedes, A., Silva, R., Ribeiro, D., Vale, C., Mosleh, A., Montenegro, P., & Meixedo, A. (2023). Detection of Wheel Polygonization Based on Wayside Monitoring and Artificial Intelligence. Sensors, 23(4). https://doi.org/10.3390/s23042188

Jelila, Y. D., & Pamuła, W. (2022). Detection of Tram Wheel Faults Using MEMS-Based Sensors. Sensors, 22(17). https://doi.org/10.3390/s22176373

Jing, L., Liu, Z., & Liu, K. (2022). A mathematically-based study of the random wheel-rail contact irregularity by wheel out-of-roundness. Vehicle System Dynamics, 60(1), 335–370. https://doi.org/10.1080/00423114.2020.1815809

Jing, L., Wang, K., & Zhai, W. (2021). Impact vibration behavior of railway vehicles: a state-of-the-art overview. Acta Mechanica Sinica/Lixue Xuebao, 37(8), 1193–1221. https://doi.org/10.1007/s10409-021-01140-9

Kang, X., Chen, G., Song, Q., Dong, B., Zhang, Y., & Dai, H. (2022). Effect of wheelset eccentricity on the out-of-round wheel of high-speed trains. Engineering Failure Analysis, 131(August 2021), 105816. https://doi.org/10.1016/j.engfailanal.2021.105816

Komite Nasional Keselamatan Transportasi Republik Indonesia. (2018). Laporan Akhir KNKT.18.03.05.02. In Laporan Investigasi Kecelakaan Perkeretaapian. https://knkt.go.id/Repo/Files/Laporan/Perkeretaapian/2018/KNKT.18.03.05.02.pdf

Kou, L., Qin, Y., & Zhao, X. (2018). An Integrated Model of kNN and GBDT for Fault Diagnosis of Wheel on Railway Vehicle. Proceedings - 2018 Prognostics and System Health Management Conference, PHM-Chongqing 2018, 432–436. https://doi.org/10.1109/PHM-Chongqing.2018.00080

Krummenacher, G., Ong, C. S., Koller, S., Kobayashi, S., & Buhmann, J. M. (2018). Wheel Defect Detection with Machine Learning. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1176–1187. https://doi.org/10.1109/TITS.2017.2720721

Lee, W. J., Wu, H., Yun, H., Kim, H., Jun, M. B. G., & Sutherland, J. W. (2019). Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia CIRP, 80, 506–511. https://doi.org/10.1016/j.procir.2018.12.019

Li, C. (2022). Wheel Polygon Detection Based on Vibration-Impact Analyses of Bogie Components. ICRT 2021 - Proceedings of the 2nd International Conference on Rail Transportation, 267–275. https://doi.org/10.1061/9780784483886.030

Liu, C., Xu, J., Wang, K., Liao, T., & Wang, P. (2022). Numerical investigation on wheel-rail impact contact solutions excited by rail spalling failure. Engineering Failure Analysis, 135(February), 106116. https://doi.org/10.1016/j.engfailanal.2022.106116

Liu, W., Ma, W., Luo, S., Zhu, S., & Wei, C. (2015). Research into the problem of wheel tread spalling caused by wheelset longitudinal vibration. Vehicle System Dynamics, 53(4), 546–567. https://doi.org/10.1080/00423114.2015.1008015

Liu, X.-Z. (2019). Railway Wheel Out-of-Roundness and Its Effects on Vehicle–Track Dynamics: A Review. Data Mining in Structural Dynamic Analysis, 41–64. https://doi.org/10.1007/978-981-15-0501-0_3

Liu, X. Z. (2019). Railway Wheel Out-of-Roundness and Its Effects on Vehicle-Track Dynamics: A Review. Data Mining in Structural Dynamic Analysis: A Signal Processing Perspective, 41–64. https://doi.org/10.1007/978-981-15-0501-0_3

Lv, K., Wang, K., Chen, Z., Cai, C., & Guo, L. (2017). Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle : Experiment and Simulation. Shock and Vibration. https://doi.org/https://doi.org/10.1155/2017/1367683

Moyar, G. J., & Stone, D. H. (1991). An analysis of the thermal contributions to railway wheel shelling. Wear, 144(1–2), 117–138. https://doi.org/10.1016/0043-1648(91)90010-R

Nacchia, M., Fruggiero, F., Lambiase, A., & Bruton, K. (2021). A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector. Applied Sciences (Switzerland), 11(6), 1–34. https://doi.org/10.3390/app11062546

Ni, Y. Q., & Zhang, Q. H. (2021). A Bayesian machine learning approach for online detection of railway wheel defects using track-side monitoring. Structural Health Monitoring, 20(4), 1536–1550. https://doi.org/10.1177/1475921720921772

Nielsen, J. (2009). 8 - Out-of-round railway wheels. In R. Lewis & U. Olofsson (Eds.), Wheel–Rail Interface Handbook (pp. 245–279). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845696788.1.245

Nielsen, J. C. O., & Johansson, A. (2000). Out-of-round railway wheels-a literature survey. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 214(2), 79–91. https://doi.org/10.1243/0954409001531351

Nielsen, J. C. O., Lombaert, G., & François, S. (2015). A hybrid model for prediction of ground-borne vibration due to discrete wheel/rail irregularities. Journal of Sound and Vibration, 345, 103–120. https://doi.org/10.1016/j.jsv.2015.01.021

Osman, H., & Yacout, S. (2022). Condition-based monitoring of the rail wheel using logical analysis of data and ant colony optimization. Journal of Quality in Maintenance Engineering, 29(2), 377–400. https://doi.org/10.1108/JQME-01-2022-0004

P. Nunes, J. Santos, E. R. (2023). Challenges in predictive maintenance – A review. CIRP Journal of Manufacturing Science and Technology, 40, 53–67. https://doi.org/https://doi.org/10.1016/j.cirpj.2022.11.004

Papaelias, M., Amini, A., Huang, Z., Vallely, P., Dias, D. C., & Kerkyras, S. (2016). Online condition monitoring of rolling stock wheels and axle bearings. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(3), 709–723. https://doi.org/10.1177/0954409714559758

Pau, M. (2005). Ultrasonic waves for effective assessment of wheel-rail contact anomalies. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 219(2), 79–90. https://doi.org/10.1243/095440905X8808

Peng, B. (2020). Mechanisms of railway wheel polygonization. University of Huddersfield.

Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A Survey of Predictive Maintenance: Systems, Purposes and Approaches. XX(Xx), 1–36. http://arxiv.org/abs/1912.07383

Shaikh, M. Z., Ahmed, Z., Chowdhry, B. S., Baro, E. N., Hussain, T., Uqaili, M. A., Mehran, S., Kumar, D., & Shah, A. A. (2023). State-of-the-Art Wayside Condition Monitoring Systems for Railway Wheels: A Comprehensive Review. IEEE Access, 11(December 2022), 13257–13279. https://doi.org/10.1109/ACCESS.2023.3240167

Sohail, A., Cheema, M. A., Ali, M. E., Toosi, A. N., & Rakha, H. A. (2023). Data-driven approaches for road safety: A comprehensive systematic literature review. Safety Science, 158(August 2022). https://doi.org/10.1016/j.ssci.2022.105949

Srivastava, J. P., Sarkar, P. K., & Ranjan, V. (2016). Effects of thermal load on wheel–rail contacts: A review. Journal of Thermal Stresses, 39(11), 1389–1418. https://doi.org/10.1080/01495739.2016.1216060

Sun, Q., Chen, C., Kemp, A. H., & Brooks, P. (2021). An on-board detection framework for polygon wear of railway wheel based on vibration acceleration of axle-box. Mechanical Systems and Signal Processing, 153, 107540. https://doi.org/10.1016/j.ymssp.2020.107540

Thakkar, N. A., Steel, J. A., Reuben, R. L., Knabe, G., Dixon, D., & Shanks, R. L. (2006). Monitoring of rail-wheel interaction using Acoustic Emission (AE). Advanced Materials Research, 13–14, 161–168. https://doi.org/10.4028/0-87849-420-0.161

Tiboni, M., Remino, C., Bussola, R., & Amici, C. (2022). A Review on Vibration-Based Condition Monitoring of Rotating Machinery. Applied Sciences (Switzerland), 12(3). https://doi.org/10.3390/app12030972

Venkatasubramanian, V., Rengaswamy, R., & Kavuri, S. N. (2003). A review of process fault detection and diagnosis. Part II: Qualitative models and search strategies. Computers & Chemical Engineering, 27(3), 313–326. https://doi.org/10.1016/s0098-1354(02)00161-8

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., & Yin, K. (2003). A review of process fault detection and diagnosis. Part I: Quantitative model-based methods. Computers & Chemical Engineering, 27(3), 327–346. https://doi.org/10.1016/s0098-1354(02)00162-x

Venkatasubramanian, V., Rengaswamy, R., Yin, K., & Kavuri, S. N. (2003). A review of process fault detection and diagnosis. Part III: Process history based methods. Computers and Chemical Engineering, 27, 327–346. www.elsevier.com/locate/compchemeng

Verkhoglyad, A. G., Kuropyatnik, I. N., Bazovkin, V. M., & Kuryshev, G. L. (2008). Infrared diagnostics of cracks in railway carriage wheels. Russian Journal of Nondestructive Testing, 44(10), 664–668. https://doi.org/10.1134/S1061830908100021

Wan, T. H., Tsang, C. W., Hui, K., & Chung, E. (2023). Anomaly detection of train wheels utilizing short-time Fourier transform and unsupervised learning algorithms. Engineering Applications of Artificial Intelligence, 122(February). https://doi.org/10.1016/j.engappai.2023.106037

Wang, W., Guo, J., & Liu, Q. (2013). Experimental study on wear and spalling behaviors of railway wheel. Chinese Journal of Mechanical Engineering (English Edition), 26(6), 1243–1249. https://doi.org/10.3901/CJME.2013.06.1243

Wang, W., He, Q., Cui, Y., & Li, Z. (2018). Joint Prediction of Remaining Useful Life and Failure Type of Train Wheelsets: Multitask Learning Approach. Journal of Transportation Engineering, Part A: Systems, 144(6). https://doi.org/10.1061/jtepbs.0000113

Xiaoyi, H., Haoran, Z., Zhikun, S., Yinqing, H., & Lan, L. (2018). Study on influence of high-order wheel polygon wear on dynamic performance of high-speed EMU vehicle. 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Delft, The Netherlands.

Xie, B., Chen, S., Xu, M., Yang, Y., & Wang, K. (2022). Polygonal Wear Identification of Wheels Based on Optimized Multiple Kernel Extreme Learning Machine. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 54(7), 1797–1806. https://doi.org/10.6052/0459-1879-22-083

Xiong, L., Lv, L., Jiang, Y., Hua, C., & Dong, D. (2022). Multi-fault Classification of Train Wheelset System. Journal of Physics: Conference Series, 2184(1). https://doi.org/10.1088/1742-6596/2184/1/012020

Xu, G., Hou, D., Qi, H., & Bo, L. (2021). High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based on extendable useful life. Mechanical Systems and Signal Processing, 146. https://doi.org/10.1016/j.ymssp.2020.107050

Xu, M., & Yao, H. (2023). Fault diagnosis method of wheelset based on EEMD-MPE and support vector machine optimized by quantum-behaved particle swarm algorithm. Measurement: Journal of the International Measurement Confederation, 216(March). https://doi.org/10.1016/j.measurement.2023.112923

Yan, B., Ma, X., Huang, G., & Zhao, Y. (2021). Two-stage physics-based Wiener process models for online RUL prediction in field vibration data. Mechanical Systems and Signal Processing, 152, 107378. https://doi.org/10.1016/j.ymssp.2020.107378

Ye, Y., Huang, C., Zeng, J., Zhou, Y., & Li, F. (2023). Shock detection of rotating machinery based on activated time-domain images and deep learning: An application to railway wheel flat detection. Mechanical Systems and Signal Processing, 186(May 2022). https://doi.org/10.1016/j.ymssp.2022.109856

Ye, Y., Shi, D., Krause, P., Tian, Q., & Hecht, M. (2020). Wheel flat can cause or exacerbate wheel polygonization. Vehicle System Dynamics, 58(10), 1575–1604. https://doi.org/10.1080/00423114.2019.1636098

Ye, Y., Zhu, B., Huang, P., & Peng, B. (2022). OORNet: A deep learning model for on-board condition monitoring and fault diagnosis of out-of-round wheels of high-speed trains. Measurement: Journal of the International Measurement Confederation, 199(February), 111268. https://doi.org/10.1016/j.measurement.2022.111268

Zhang, K., Li, Y., Scarf, P., & Ball, A. (2011). Feature selection for high-dimensional machinery fault diagnosis data using multiple models and Radial Basis Function networks. Neurocomputing, 74(17), 2941–2952. https://doi.org/10.1016/j.neucom.2011.03.043

Zurek, Z. H. (2006). Magnetic monitoring of the fatigue process of the rim material of railway wheel sets. NDT and E International, 39(8), 675–679. https://doi.org/10.1016/j.ndteint.2005.12.004




DOI: https://doi.org/10.21831/dinamika.v9i1.72682

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Dinamika Vokasional Teknik Mesin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Lisensi Creative Commons 

Jurnal Dinamika Vokasional Teknik Mesin by http://journal.uny.ac.id/index.php/dynamika was distributed under a Creative Commons Attribution 4.0 International License.


 

 

 

in collaboration with:

 

 

View My Stats