TRAIN WHEEL OUT-OF-ROUNDNESS (OOR) AND MACHINE LEARNING-VIBRATION BASED FAULT DIAGNOSIS: A REVIEW
I Wayan Suweca, Institut Teknologi Bandung, Indonesia
Yunendar Aryo Handoko, Institut Teknologi Bandung, Indonesia
Abstract
Keywords
Full Text:
10-25 (PDF)References
Abid, A., Khan, M. T., & Iqbal, J. (2021). A review on fault detection and diagnosis techniques: basics and beyond. Artificial Intelligence Review, 54(5), 3639–3664. https://doi.org/10.1007/s10462-020-09934-2
Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Applied Sciences (Switzerland), 12(16). https://doi.org/10.3390/app12168081
Bracciali, A., & Cascini, G. (1997). Detection of corrugation and wheelflats of railway wheels using energy and cepstrum analysis of rail acceleration. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 211(2), 109–116. https://doi.org/10.1243/0954409971530950
Braghin, F., Bruni, S., & Lewis, R. (2009). 6 - Railway wheel wear. In R. Lewis & U. Olofsson (Eds.), Wheel–Rail Interface Handbook (pp. 172–210). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845696788.1.172
Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. da P., Basto, J. P., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers and Industrial Engineering, 137(September), 106024. https://doi.org/10.1016/j.cie.2019.106024
Chi, Z., Lin, J., Chen, R., & Huang, S. (2020). Data-driven approach to study the polygonization of high-speed railway train wheel-sets using field data of China’s HSR train. Measurement: Journal of the International Measurement Confederation, 149, 107022. https://doi.org/10.1016/j.measurement.2019.107022
Chiello, O., Le Bellec, A., Pallas, M. A., Munoz, P., & Janillon, V. (2019). Characterisation of wheel/rail roughness and track decay rates on a tram network. INTER-NOISE 2019 MADRID - 48th International Congress and Exhibition on Noise Control Engineering. https://doi.org/https://hal.science/hal-02305430
Chong, S. Y., Lee, J. R., & Shin, H. J. (2010). A review of health and operation monitoring technologies for trains. Smart Structures and Systems, 6(9), 1079–1105. https://doi.org/10.12989/sss.2010.6.9.1079
Çinar, Z. M., Nuhu, A. A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability (Switzerland), 12(19). https://doi.org/10.3390/su12198211
Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., & Barbosa, J. (2020). Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Computers in Industry, 123, 103298. https://doi.org/10.1016/j.compind.2020.103298
Escobet, T., Bregon, A., Pulido, B., & Puig, V. (2019). Fault Diagnosis of Dynamic Systems: Quantitative and Qualitative Approaches. In Fault Diagnosis of Dynamic Systems: Quantitative and Qualitative Approaches. https://doi.org/10.1007/978-3-030-17728-7
Fadzail, N. F., Mat Zali, S., Mid, E. C., & Jailani, R. (2022). Application of Automated Machine Learning (AutoML) Method in Wind Turbine Fault Detection. Journal of Physics: Conference Series, 2312(1). https://doi.org/10.1088/1742-6596/2312/1/012074
Fröhling, R., Spangenberg, U., & Reitmann, E. (2019). Root cause analysis of locomotive wheel tread polygonisation. Wear, 432–433(April). https://doi.org/10.1016/j.wear.2019.05.026
Gao, R., Wang, L., Teti, R., Dornfeld, D., Kumara, S., Mori, M., & Helu, M. (2015). Cloud-enabled prognosis for manufacturing. CIRP Annals - Manufacturing Technology, 64(2), 749–772. https://doi.org/http://dx.doi.org/10.1016/j.cirp.2015.05.011
Gonzalez-Jimenez, D., Del-Olmo, J., Poza, J., Garramiola, F., & Madina, P. (2021). Data-driven fault diagnosis for electric drives: A review. Sensors, 21(12). https://doi.org/10.3390/s21124024
Guedes, A., Silva, R., Ribeiro, D., Vale, C., Mosleh, A., Montenegro, P., & Meixedo, A. (2023). Detection of Wheel Polygonization Based on Wayside Monitoring and Artificial Intelligence. Sensors, 23(4). https://doi.org/10.3390/s23042188
Jelila, Y. D., & Pamuła, W. (2022). Detection of Tram Wheel Faults Using MEMS-Based Sensors. Sensors, 22(17). https://doi.org/10.3390/s22176373
Jing, L., Liu, Z., & Liu, K. (2022). A mathematically-based study of the random wheel-rail contact irregularity by wheel out-of-roundness. Vehicle System Dynamics, 60(1), 335–370. https://doi.org/10.1080/00423114.2020.1815809
Jing, L., Wang, K., & Zhai, W. (2021). Impact vibration behavior of railway vehicles: a state-of-the-art overview. Acta Mechanica Sinica/Lixue Xuebao, 37(8), 1193–1221. https://doi.org/10.1007/s10409-021-01140-9
Kang, X., Chen, G., Song, Q., Dong, B., Zhang, Y., & Dai, H. (2022). Effect of wheelset eccentricity on the out-of-round wheel of high-speed trains. Engineering Failure Analysis, 131(August 2021), 105816. https://doi.org/10.1016/j.engfailanal.2021.105816
Komite Nasional Keselamatan Transportasi Republik Indonesia. (2018). Laporan Akhir KNKT.18.03.05.02. In Laporan Investigasi Kecelakaan Perkeretaapian. https://knkt.go.id/Repo/Files/Laporan/Perkeretaapian/2018/KNKT.18.03.05.02.pdf
Kou, L., Qin, Y., & Zhao, X. (2018). An Integrated Model of kNN and GBDT for Fault Diagnosis of Wheel on Railway Vehicle. Proceedings - 2018 Prognostics and System Health Management Conference, PHM-Chongqing 2018, 432–436. https://doi.org/10.1109/PHM-Chongqing.2018.00080
Krummenacher, G., Ong, C. S., Koller, S., Kobayashi, S., & Buhmann, J. M. (2018). Wheel Defect Detection with Machine Learning. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1176–1187. https://doi.org/10.1109/TITS.2017.2720721
Lee, W. J., Wu, H., Yun, H., Kim, H., Jun, M. B. G., & Sutherland, J. W. (2019). Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia CIRP, 80, 506–511. https://doi.org/10.1016/j.procir.2018.12.019
Li, C. (2022). Wheel Polygon Detection Based on Vibration-Impact Analyses of Bogie Components. ICRT 2021 - Proceedings of the 2nd International Conference on Rail Transportation, 267–275. https://doi.org/10.1061/9780784483886.030
Liu, C., Xu, J., Wang, K., Liao, T., & Wang, P. (2022). Numerical investigation on wheel-rail impact contact solutions excited by rail spalling failure. Engineering Failure Analysis, 135(February), 106116. https://doi.org/10.1016/j.engfailanal.2022.106116
Liu, W., Ma, W., Luo, S., Zhu, S., & Wei, C. (2015). Research into the problem of wheel tread spalling caused by wheelset longitudinal vibration. Vehicle System Dynamics, 53(4), 546–567. https://doi.org/10.1080/00423114.2015.1008015
Liu, X.-Z. (2019). Railway Wheel Out-of-Roundness and Its Effects on Vehicle–Track Dynamics: A Review. Data Mining in Structural Dynamic Analysis, 41–64. https://doi.org/10.1007/978-981-15-0501-0_3
Liu, X. Z. (2019). Railway Wheel Out-of-Roundness and Its Effects on Vehicle-Track Dynamics: A Review. Data Mining in Structural Dynamic Analysis: A Signal Processing Perspective, 41–64. https://doi.org/10.1007/978-981-15-0501-0_3
Lv, K., Wang, K., Chen, Z., Cai, C., & Guo, L. (2017). Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle : Experiment and Simulation. Shock and Vibration. https://doi.org/https://doi.org/10.1155/2017/1367683
Moyar, G. J., & Stone, D. H. (1991). An analysis of the thermal contributions to railway wheel shelling. Wear, 144(1–2), 117–138. https://doi.org/10.1016/0043-1648(91)90010-R
Nacchia, M., Fruggiero, F., Lambiase, A., & Bruton, K. (2021). A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector. Applied Sciences (Switzerland), 11(6), 1–34. https://doi.org/10.3390/app11062546
Ni, Y. Q., & Zhang, Q. H. (2021). A Bayesian machine learning approach for online detection of railway wheel defects using track-side monitoring. Structural Health Monitoring, 20(4), 1536–1550. https://doi.org/10.1177/1475921720921772
Nielsen, J. (2009). 8 - Out-of-round railway wheels. In R. Lewis & U. Olofsson (Eds.), Wheel–Rail Interface Handbook (pp. 245–279). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845696788.1.245
Nielsen, J. C. O., & Johansson, A. (2000). Out-of-round railway wheels-a literature survey. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 214(2), 79–91. https://doi.org/10.1243/0954409001531351
Nielsen, J. C. O., Lombaert, G., & François, S. (2015). A hybrid model for prediction of ground-borne vibration due to discrete wheel/rail irregularities. Journal of Sound and Vibration, 345, 103–120. https://doi.org/10.1016/j.jsv.2015.01.021
Osman, H., & Yacout, S. (2022). Condition-based monitoring of the rail wheel using logical analysis of data and ant colony optimization. Journal of Quality in Maintenance Engineering, 29(2), 377–400. https://doi.org/10.1108/JQME-01-2022-0004
P. Nunes, J. Santos, E. R. (2023). Challenges in predictive maintenance – A review. CIRP Journal of Manufacturing Science and Technology, 40, 53–67. https://doi.org/https://doi.org/10.1016/j.cirpj.2022.11.004
Papaelias, M., Amini, A., Huang, Z., Vallely, P., Dias, D. C., & Kerkyras, S. (2016). Online condition monitoring of rolling stock wheels and axle bearings. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(3), 709–723. https://doi.org/10.1177/0954409714559758
Pau, M. (2005). Ultrasonic waves for effective assessment of wheel-rail contact anomalies. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 219(2), 79–90. https://doi.org/10.1243/095440905X8808
Peng, B. (2020). Mechanisms of railway wheel polygonization. University of Huddersfield.
Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A Survey of Predictive Maintenance: Systems, Purposes and Approaches. XX(Xx), 1–36. http://arxiv.org/abs/1912.07383
Shaikh, M. Z., Ahmed, Z., Chowdhry, B. S., Baro, E. N., Hussain, T., Uqaili, M. A., Mehran, S., Kumar, D., & Shah, A. A. (2023). State-of-the-Art Wayside Condition Monitoring Systems for Railway Wheels: A Comprehensive Review. IEEE Access, 11(December 2022), 13257–13279. https://doi.org/10.1109/ACCESS.2023.3240167
Sohail, A., Cheema, M. A., Ali, M. E., Toosi, A. N., & Rakha, H. A. (2023). Data-driven approaches for road safety: A comprehensive systematic literature review. Safety Science, 158(August 2022). https://doi.org/10.1016/j.ssci.2022.105949
Srivastava, J. P., Sarkar, P. K., & Ranjan, V. (2016). Effects of thermal load on wheel–rail contacts: A review. Journal of Thermal Stresses, 39(11), 1389–1418. https://doi.org/10.1080/01495739.2016.1216060
Sun, Q., Chen, C., Kemp, A. H., & Brooks, P. (2021). An on-board detection framework for polygon wear of railway wheel based on vibration acceleration of axle-box. Mechanical Systems and Signal Processing, 153, 107540. https://doi.org/10.1016/j.ymssp.2020.107540
Thakkar, N. A., Steel, J. A., Reuben, R. L., Knabe, G., Dixon, D., & Shanks, R. L. (2006). Monitoring of rail-wheel interaction using Acoustic Emission (AE). Advanced Materials Research, 13–14, 161–168. https://doi.org/10.4028/0-87849-420-0.161
Tiboni, M., Remino, C., Bussola, R., & Amici, C. (2022). A Review on Vibration-Based Condition Monitoring of Rotating Machinery. Applied Sciences (Switzerland), 12(3). https://doi.org/10.3390/app12030972
Venkatasubramanian, V., Rengaswamy, R., & Kavuri, S. N. (2003). A review of process fault detection and diagnosis. Part II: Qualitative models and search strategies. Computers & Chemical Engineering, 27(3), 313–326. https://doi.org/10.1016/s0098-1354(02)00161-8
Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., & Yin, K. (2003). A review of process fault detection and diagnosis. Part I: Quantitative model-based methods. Computers & Chemical Engineering, 27(3), 327–346. https://doi.org/10.1016/s0098-1354(02)00162-x
Venkatasubramanian, V., Rengaswamy, R., Yin, K., & Kavuri, S. N. (2003). A review of process fault detection and diagnosis. Part III: Process history based methods. Computers and Chemical Engineering, 27, 327–346. www.elsevier.com/locate/compchemeng
Verkhoglyad, A. G., Kuropyatnik, I. N., Bazovkin, V. M., & Kuryshev, G. L. (2008). Infrared diagnostics of cracks in railway carriage wheels. Russian Journal of Nondestructive Testing, 44(10), 664–668. https://doi.org/10.1134/S1061830908100021
Wan, T. H., Tsang, C. W., Hui, K., & Chung, E. (2023). Anomaly detection of train wheels utilizing short-time Fourier transform and unsupervised learning algorithms. Engineering Applications of Artificial Intelligence, 122(February). https://doi.org/10.1016/j.engappai.2023.106037
Wang, W., Guo, J., & Liu, Q. (2013). Experimental study on wear and spalling behaviors of railway wheel. Chinese Journal of Mechanical Engineering (English Edition), 26(6), 1243–1249. https://doi.org/10.3901/CJME.2013.06.1243
Wang, W., He, Q., Cui, Y., & Li, Z. (2018). Joint Prediction of Remaining Useful Life and Failure Type of Train Wheelsets: Multitask Learning Approach. Journal of Transportation Engineering, Part A: Systems, 144(6). https://doi.org/10.1061/jtepbs.0000113
Xiaoyi, H., Haoran, Z., Zhikun, S., Yinqing, H., & Lan, L. (2018). Study on influence of high-order wheel polygon wear on dynamic performance of high-speed EMU vehicle. 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Delft, The Netherlands.
Xie, B., Chen, S., Xu, M., Yang, Y., & Wang, K. (2022). Polygonal Wear Identification of Wheels Based on Optimized Multiple Kernel Extreme Learning Machine. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 54(7), 1797–1806. https://doi.org/10.6052/0459-1879-22-083
Xiong, L., Lv, L., Jiang, Y., Hua, C., & Dong, D. (2022). Multi-fault Classification of Train Wheelset System. Journal of Physics: Conference Series, 2184(1). https://doi.org/10.1088/1742-6596/2184/1/012020
Xu, G., Hou, D., Qi, H., & Bo, L. (2021). High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based on extendable useful life. Mechanical Systems and Signal Processing, 146. https://doi.org/10.1016/j.ymssp.2020.107050
Xu, M., & Yao, H. (2023). Fault diagnosis method of wheelset based on EEMD-MPE and support vector machine optimized by quantum-behaved particle swarm algorithm. Measurement: Journal of the International Measurement Confederation, 216(March). https://doi.org/10.1016/j.measurement.2023.112923
Yan, B., Ma, X., Huang, G., & Zhao, Y. (2021). Two-stage physics-based Wiener process models for online RUL prediction in field vibration data. Mechanical Systems and Signal Processing, 152, 107378. https://doi.org/10.1016/j.ymssp.2020.107378
Ye, Y., Huang, C., Zeng, J., Zhou, Y., & Li, F. (2023). Shock detection of rotating machinery based on activated time-domain images and deep learning: An application to railway wheel flat detection. Mechanical Systems and Signal Processing, 186(May 2022). https://doi.org/10.1016/j.ymssp.2022.109856
Ye, Y., Shi, D., Krause, P., Tian, Q., & Hecht, M. (2020). Wheel flat can cause or exacerbate wheel polygonization. Vehicle System Dynamics, 58(10), 1575–1604. https://doi.org/10.1080/00423114.2019.1636098
Ye, Y., Zhu, B., Huang, P., & Peng, B. (2022). OORNet: A deep learning model for on-board condition monitoring and fault diagnosis of out-of-round wheels of high-speed trains. Measurement: Journal of the International Measurement Confederation, 199(February), 111268. https://doi.org/10.1016/j.measurement.2022.111268
Zhang, K., Li, Y., Scarf, P., & Ball, A. (2011). Feature selection for high-dimensional machinery fault diagnosis data using multiple models and Radial Basis Function networks. Neurocomputing, 74(17), 2941–2952. https://doi.org/10.1016/j.neucom.2011.03.043
Zurek, Z. H. (2006). Magnetic monitoring of the fatigue process of the rim material of railway wheel sets. NDT and E International, 39(8), 675–679. https://doi.org/10.1016/j.ndteint.2005.12.004
DOI: https://doi.org/10.21831/dinamika.v9i1.72682
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Dinamika Vokasional Teknik Mesin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Dinamika Vokasional Teknik Mesin by http://journal.uny.ac.id/index.php/dynamika was distributed under a Creative Commons Attribution 4.0 International License.
View My Stats