Pengaruh Sudut Serang Aerofoil Terhadap Distribusi Tekanan dan Gaya Angkat
Abstract
The aerofoils are used to get the lifting force on the design of plane’s wings. The lifting force is caused by difference air velocity on upper and lower aerofoil which the magnitude depend on attack angle of aerofoil and air velocity exist surrounding. This experiment aims to show the force vector (pressure distribute) on the aerofoil. The aerofoil is attached by air with konstant velocity. The research procedure is done by change the attack angle of aerofoil on five formation. The surface of aerofoil is connected with pressure gage which disperse at 11 point of measurement. The result shows that magnitude of force vector is depended on attack angle of aerofoil. Increasing angle of aerofoil until boundary angle will be followed by increasing air velocity on the point of measurement and finally increase force vector. Upper boundary angle will be followed by decreasing air velocity and finally decrease force vector.
Aerofoil digunakan untuk mendapatkan gaya angkat pada desain sayap pesawat. Gaya angkat disebabkan oleh perbedaan kecepatan udara pada aerofoil atas dan bawah yang besarnya tergantung pada sudut serang aerofoil dan kecepatan udara yang ada disekitarnya. Eksperimen ini bertujuan untuk menampilkan vektor gaya (distribusi tekanan) pada aerofoil. Aerofoil dilekatkan pada udara dengan kecepatan konstan. Prosedur penelitian dilakukan dengan cara mengubah sudut serang aerofoil pada lima formasi. Permukaan aerofoil dihubungkan dengan alat ukur tekanan yang tersebar pada 11 titik pengukuran. Hasil menunjukkan bahwa besarnya vektor gaya bergantung pada sudut serang aerofoil. Sudut aerofoil yang meningkat hingga sudut batas akan diikuti dengan peningkatan kecepatan udara pada titik pengukuran dan akhirnya meningkatkan vektor gaya. Sudut batas atas akan diikuti oleh penurunan kecepatan udara pada titik pengukuran dan akhirnya menurunkan vektor gaya.
Keywords
Full Text:
FullpaperReferences
Alam, G.M.J., Taher, A. & Islam, Q., 2014. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model. Procedia Engineering, 90, pp.225–231. Bagade, P.M., Bhumkar, Y.G. & Sengupta, T.K., 2014. Computers & Fluids An improved orthogonal grid generation method for solving flows past highly cambered aerofoils with and without roughness elements. COMPUTERS AND FLUIDS, 103, pp.275–289. Dwinnell and James H., 1949. Principle of Aerodinamics , First Edition. Mc Graw Hill Book Company : New York Haque, M.N., Ali, M. & Ara, I., 2015. Experimental investigation on the performance of NACA 4412 aerofoil with curved leading edge planform. Procedia Engineering, 105(Icte 2014), pp.232–240. Ismail, F. & Vijayaraghavan, K., 2015. The effects of aerofoil pro fi le modi fi cation on a vertical axis wind turbine performance. , 80, pp.20–31. Szubert, D. et al., 2016. European Journal of Mechanics B / Fluids Numerical study of the turbulent transonic interaction and transition location effect involving optimisation around a supercritical aerofoil. European Journal of Mechanics B/Fluids, 55, pp.380–393. Venkataraman, D., Bottaro, A. & Govindarajan, R., 2014. A minimal model for flow control on an aerofoil using a poro-elastic coating. Journal of Fluids and Structures, 47, pp.150–164. White and Frank M., 1988. Mekanika Fluida, Edisi kedua jilid 1. Jakarta : Erlangga Zhou, Q. et al., 2017. Reduced order unsteady aerodynamic model of a rigid aerofoil in gust encounters. Aerospace Science and Technology, 63, pp.203–213.
DOI: https://doi.org/10.21831/dinamika.v2i2.15999
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 JURNAL DINAMIKA VOKASIONAL TEKNIK MESIN
Jurnal Dinamika Vokasional Teknik Mesin by http://journal.uny.ac.id/index.php/dynamika was distributed under a Creative Commons Attribution 4.0 International License.
View My Stats