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 This study proposes a Prescriptive Maintenance (RxM) framework 

aimed at improving the Physical Availability (PA) of Komatsu Dump 

Trucks HD785-7 operated under a Full Maintenance Contract (FMC) 

at PT ABC Site Sangkulirang. The research integrates the DMAIC 

methodology with the Knowledge Discovery in Databases (KDD) 

process to systematically analyze operational failures. Historical 

breakdown data were preprocessed and modeled using a Naïve Bayes 

(NB) classifier, selected for its robustness in handling categorical 

features common in maintenance records. The model demonstrated 

high predictive performance with 97.93% accuracy, 100% precision, 

94.12% recall, and an AUC of 0.995, indicating strong reliability in 

distinguishing high-risk conditions. The RxM framework was 

embedded into daily maintenance planning and Standard Operating 

Procedures (SOPs), supported by a monitoring dashboard for 

continuous feedback and retraining. As a result, the proportion of 

Breakdown Unscheduled (BUS) events decreased from 45% in 2024 

to 26% in mid-2025, while fleet PA consistently exceeded the 

contractual target of 92%, reaching 95.5%. These findings confirm 

that embedding prescriptive analytics into maintenance workflows not 

only reduces unplanned downtime but also enhances resource 

allocation and decision-making. The case study highlights the 

practical value of combining statistical learning with structured 

process improvement to drive digital transformation in mining 

operations. 
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INTRODUCTION  

The reliability of heavy equipment plays a crucial role in the mining sector, as downtime directly 

affects productivity and operational costs. PT ABC operates a fleet of Komatsu Dump Truck HD785-7 

under an FMC, which requires a minimum PA of 92%. However, in 2024, the average PA of the fleet 

reached only 90.6%, with a high rate of BUS at 45%. 

With advancements in technology, maintenance strategies have evolved significantly. Initially, 

the approach was Reactive Maintenance (RM), where equipment was only repaired after failure. Over 

time, this evolved into Preventive Maintenance (PM), focusing on scheduled maintenance to prevent 
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failures through component replacements or routine maintenance. Subsequently, Condition-Based 

Maintenance (CBM) emerged, relying on equipment condition monitoring to detect potential issues 

based on specific metrics. Predictive Maintenance (PdM) followed, using sensor data and analytics to 

predict failures before they occur, though it was still limited in providing specific action 

recommendations. Finally, RxM integrated more complex analytics and diverse data to not only predict 

failures but also offer actionable recommendations to prevent these failures, such as scheduling part 

replacements or operational adjustments. This approach allows for more targeted decision-making and 

enables maintenance teams to act faster and more efficiently in maintaining optimal equipment 

performance. 

 

Figure 1. Evolution of Maintenance Strategies (Source: Limble, 2025) 

 

The evolution of maintenance strategies, as shown in Figure 1, demonstrates the shift from 

reactive maintenance to data-driven and more sophisticated analytical strategies. PdM uses analytics to 

predict potential failures, RxM goes further by providing more detailed and specific steps to address 

detected issues. By integrating larger datasets and advanced analysis techniques, RxM facilitates more 

proactive and efficient maintenance decisions, ensuring quicker actions to prevent severe equipment 

failures (Limble, 2025; Pillai et al., 2021). 

Several previous studies have laid the foundation for the approach used in this research. 

Ferdinand (2021) emphasized the importance of prioritizing emergency maintenance needs to prevent 

unscheduled failures in heavy equipment operations managed under FMC. Although a considerable 

body of research has focused on the application of PdM to anticipate equipment failures, the 

comprehensive implementation of RxM frameworks in real-world industrial environments remains 

relatively scarce (Choubey et al., 2021). To bridge this gap, recent investigations have advanced the 

methodological approaches in heavy mining equipment maintenance. For instance, Moniri-Morad and 

Sattarvand (2023) compared various system reliability evaluation methods in mining dump trucks, 

highlighting how reliability modeling contributes to identifying critical failure modes and supporting 

optimized maintenance planning. Complementing this perspective, Rahimdel et al. (2024) employed a 

dynamic Bayesian network approach to analyze the reliability of mining truck subsystems, providing 
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empirical evidence that probabilistic models can enhance decision-making in maintenance scheduling 

and align with the prescriptive paradigm. Similarly, Giacotto, Marques, and Martinetti (2023) proposed 

a holistic and scalable optimization framework for prescriptive maintenance that leverages IoT, asset 

health prognostics, and advanced analytics, demonstrating the applicability of RxM in complex and 

dynamic industrial settings. 

One of the techniques used in RxM is the NB algorithm. This algorithm has proven effective in 

classification tasks, especially for categorical data commonly encountered in industrial equipment 

maintenance. The strength of NB lies in its ability to handle relatively small datasets with probabilistic 

results that are easy to interpret, making it highly useful for maintenance decision-making (Choubey et 

al., 2020). Several previous studies have applied NB in predictive contexts to forecast equipment 

failures, reporting high classification accuracy rates (Chazhoor et al., 2021; Fajar et al., 2021). This 

study adapts NB into the RxM cycle, focusing on maintenance operations under the FMC and linking 

failure predictions with appropriate maintenance actions. 

Moreover, the concept of RxM has advanced with the integration of sophisticated tools. For 

example, Mao et al. (2023) combined RxM with digital twin technology to optimize maintenance 

scheduling under resource constraints. This study builds on these insights but focuses on practical 

application in heavy mining equipment, using NB to drive the integrated RxM program within 

maintenance operations. 

In terms of algorithms, NB classification has proven effective for maintenance data analysis. 

Chazhoor et al. (2020) compared NB with other techniques for predicting machine failures and found 

that NB strikes a strong balance between simplicity and accuracy, particularly for categorical data and 

imbalanced datasets. Fajar et al. (2021) applied NB to production machine maintenance logs and 

reported that NB's ability to handle categorical features and incomplete data resulted in reliable 

predictions in the industrial context. These findings support the choice of NB for classifying 

maintenance needs in this study. 

RapidMiner is an open-source data science platform that facilitates the entire data analysis 

process, from preparation to deployment. With its user-friendly graphical interface, RapidMiner enables 

non-technical users to build and execute machine learning workflows, including Naïve Bayes for 

classification. The RapidMiner Altair AI Studio application provides an intuitive workspace for 

designing and managing analytical processes, making it an effective tool for advanced data-driven 

solutions. 
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Figure 2. RapidMiner Altair AI Studio 

 

To ensure that the implementation of RxM delivers sustainable impact, it is essential to integrate 

RxM with a structured improvement framework. One widely used framework is DMAIC, which 

provides a systematic approach to analyzing and improving processes. The literature emphasizes the 

importance of combining data-driven models with structured improvement frameworks to ensure that 

the changes made are not only temporary but can result in long-term improvements (Lumban Raja et 

al., 2024). 

This study aims to apply RxM, supported by NB classification, to identify patterns in historical 

failure data and provide preventative action recommendations. The uniqueness of this research lies in 

the integration of RxM into FMC operations through updated SOPs and the creation of a dashboard, 

which aims to close the gap between prediction and data-driven decision-making. 

 

METHOD  

Research Framework 

This research follows the DMAIC (Define-Measure-Analyze-Improve-Control) methodology 

integrated with the KDD (Knowledge Discovery in Databases) workflow. The DMAIC phases are used 

to define the problem, collect data, analyze results, implement improvements, and control outcomes to 

ensure continuous improvement. Meanwhile, the KDD process supports this research by extracting 

insights from the existing data through selection, cleaning, and modeling relevant data. The flow 

diagrams illustrating the research framework are shown in Figures 3 and 4. 
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Figure 3. DMAIC Framework 

 

This diagram illustrates the DMAIC phases used in this research. The first phase, Define, aims 

to define the existing problem, such as low PA of the fleet. Measure involves gathering relevant 

operational failure data. Next, in the Analyze phase, the collected data is analyzed to identify failure 

patterns. During the Improve phase, prescriptive maintenance solutions are applied to enhance PA, and 

the final Control phase ensures that the improvements are maintained, and results are monitored over 

time. 

 

Figure 4. Knowledge Discovery in Databases workflow 

 

This diagram shows the KDD workflow applied in this study to extract insights from the 

available data. The first stage, data selection, involves choosing relevant failure data for the research 

objective. Next, data cleaning removes invalid or incomplete entries to ensure optimal data quality. Data 

modeling is then performed using the NB algorithm to identify patterns related to preventive 

maintenance needs and predict anticipated failure times. 
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Naïve Bayes Classifier 

The NB Classifier is based on Bayes' Theorem, which provides a method for calculating the 

probability of a hypothesis given the available evidence. The basic formula for Bayes' Theorem is as 

follows: 

𝐏(𝐇|𝐄)  =  
𝑃(𝐻|𝐸) .𝑃(𝐻)

𝑃(𝐸)
                     (1) 

Where: 

• P(H∣E) is the posterior probability, i.e., the probability of hypothesis H (e.g., class or label) 

given evidence E (e.g., data or attributes). 

• P(E∣H) is the likelihood of evidence E occurring given hypothesis H is true. 

• P(H) is the prior probability of hypothesis H, representing our belief in the hypothesis before 

considering the evidence. 

• P(E) is the marginal probability of evidence E, used to normalize the result. 

The core mechanism of NB classification involves several key steps: 

1. Calculating prior probabilities for each class label based on historical data. 

2. Estimating the likelihood of each attribute value given the class label. 

3. Applying Bayes' Theorem to compute the posterior probability for each class. 

4. Choosing the class with the highest posterior probability as the prediction for each case. 

Although this method assumes feature independence, it has proven effective in many 

classification applications, such as text recognition and spam filtering, due to its simplicity and 

computational speed. 

Data Sources 

The dataset employed in this research was derived from Daily Activity Reports (DAR) 

documented within PT ABC’s Lakoni system. The reports encompassed failure incidents recorded over 

a six-month operational period across 47 units of Komatsu Dump Trucks HD785-7, resulting in 924 

valid entries (data records). Each entry was categorized either as “Yes” (Breakdown Unscheduled, BUS, 

indicating the need for Preventive Maintenance) or “No” (Breakdown Scheduled, BS, classified as non-

critical). This categorization facilitated a focused analysis of unscheduled failures, which represent a 

primary contributor to the observed decline in Physical Availability (PA). 
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Table 1. DAR Dataset sample after preprocessing   

Machine ID Breakdown Type Problem Attribute Shift Label 

DT7044 Tire Low Power Day Yes 

DT7052 Electrical System Alternator Fault Night Yes 

DT7071 Hydraulics Brake Leak Day Yes 

DT7086 Steering Abnormal Noise Day No 

DT7090 Electrical System Starter Failure Night Yes 

 

Data Preprocessing 

Before the data is used for predictive modeling, preprocessing steps are performed to ensure 

optimal data quality. Invalid records and incomplete columns are removed from the dataset. Feature 

selection is then performed to choose relevant attributes for modeling, such as Machine ID, Breakdown 

Duration, Breakdown Type, Problem Attribute, and Shift. Categorical data is encoded to meet the 

requirements of the Naïve Bayes algorithm, while numeric variables are kept in their original form. This 

step is crucial to minimize noise that could affect the model’s accuracy. 

Modeling 

The Naïve Bayes classification model was applied using RapidMiner Studio 9.6. The dataset 

was split into two parts: 75% for training (682 records) and 25% for testing (242 records). This data 

split ensures that the model does not overfit and can be tested on unseen data. To handle categories not 

found in the training data, Laplace smoothing is applied, ensuring model stability even when 

encountering unexpected categories in the test dataset. 

 

Figure 5. Naïve Bayes Data Modeling Process on RapidMiner Studio Platform 
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Evaluation Metrics 

The performance of the model is evaluated using several standard metrics, including accuracy, 

precision, recall, and AUC (Area Under the Curve). Accuracy measures the proportion of correct 

predictions compared to the total number of predictions, while precision calculates the proportion of 

"Yes" predictions that correctly represent unscheduled failures. Recall indicates how many missed 

failures can be captured by the model. AUC is used to measure the model’s ability to distinguish between 

both classes (scheduled and unscheduled failures) across various thresholds. Additionally, to ensure that 

the model does not overfit and can generalize well, 5-fold cross-validation is performed on the training 

data. 

RESULTS AND DISCUSSION  

Failure Analysis 

A historical failure data analysis was conducted to identify dominant failure modes and validate 

the focus of the prescriptive model. The breakdown distribution revealed that a few subsystems were 

responsible for the majority of Dump Truck failures. As shown in Figure 6, tires were the most failure-

prone component with 92 breakdown occurrences, followed by the electrical system with 68 

occurrences. These two categories significantly outnumbered other components, such as the steering 

system, which recorded only a few incidents. This finding indicates that tires and electrical systems are 

the top priorities for reliability improvement, consistent with field observations where tires degrade 

rapidly in mining environments and electrical issues, such as wiring and alternator problems, occur 

frequently. Hence, prescriptive maintenance focusing on tire management (e.g., pressure checks and 

scheduled replacements) and electrical inspections is expected to deliver significant benefits. 

 

Figure 6. Breakdown Type 
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Furthermore, a detailed analysis of problem attributes (specific failure symptoms or anomalies) 

recorded in the Daily Activity Reports (DAR) was conducted. Although more than 100 failure 

descriptions were recorded, several issues recurred frequently. The most common was “Low Power” 

(27 instances), typically indicating engine power loss, often related to fuel system or turbocharger 

problems. Other recurring problems included “Can’t Start” and “Add Pressure.” Identifying these 

patterns enables more targeted actions. For instance, if “Low Power” alerts often precede major engine 

failures, prescriptive actions such as cleaning fuel filters or inspecting the turbocharger should be 

implemented whenever these symptoms are detected in Figure 7. 

 

Figure 7. Attribute Problem 

In addition, operational patterns also influenced failure risk. As illustrated in Figure 8, more 

failures occurred during Day Shifts (242 cases) compared to Night Shifts (93 cases). This may be 

attributed to heavier Dump Truck usage during the day or differences in crew activity. These findings 

suggest that daytime operations pose higher risks, requiring increased staffing or vigilance from 

maintenance crews. Such operational insights complement model predictions and can guide resource 

allocation in the field. 



  

 

 

 

Jurnal Dinamika Vokasional Teknik Mesin, Volume.10 No.2, October 2025|   129 

 

Figure 8. Work Shift 

Based on the visual analysis and predictive modeling conducted using RapidMiner, unit 

DT7044 recorded the highest number of failures, with a total of 20 events, placing it in the high-risk 

category (Figure 9). This finding is consistent with the Naïve Bayes model results, which indicated that 

DT7044 has a very high likelihood of requiring preventive maintenance. The high frequency of failures 

in this unit reflects a decline in reliability and poses a potential threat to operational efficiency if not 

addressed promptly. Possible contributing factors include component fatigue, limitations in previous 

maintenance effectiveness, or specific operating conditions. Therefore, DT7044 should be prioritized in 

the prescriptive maintenance schedule through measures such as advanced inspections, scheduled 

component replacements, and shift-based monitoring. These actions will help reduce unscheduled 

downtime, control maintenance costs, and sustain equipment availability, while also reinforcing the 

implementation of RxM as a data-driven strategy in the field. 

 

Figure 9. Machine number DT7044 has the highest number of failures 
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Model Performance 

The Naïve Bayes model demonstrated excellent predictive performance on the test dataset (242 

cases), achieving an accuracy of 97.93%, with 237 cases correctly classified. As summarized in Figure 

9, the classification results were: 80 True Positives (TP), 157 True Negatives (TN), 0 False Positives 

(FP), and 5 False Negatives (FN). These results highlight the model’s precision of 100% for the “Yes” 

class, recall of 94.12%, and accuracy of 97.93% overall. 

 

Figure 10. Naïve Bayes model performance results 

 

The Performance Vector results (Figure 11) confirm these findings: 

• Accuracy: 97.93% – Almost all predictions match the actual results, indicating that the model 

has a very high level of accuracy in classification. 

• Precision (Yes): 100% – All “Yes” predictions provided by the model actually require 

maintenance, indicating that the model does not generate false alarms. 

• Recall: 94.12% – Most units requiring maintenance were correctly detected, although there were 

some missed failures (false negatives). 

• AUC: 0.995 – The model is very effective at distinguishing between cases that require 

maintenance (“Yes”) and those that do not (“No”) with near-perfect accuracy. This high AUC 

value indicates that the model has excellent discrimination capabilities shown in Figure 12. 

 

Figure 11. Performance Vector 



  

 

 

 

Jurnal Dinamika Vokasional Teknik Mesin, Volume.10 No.2, October 2025|   131 

 

Figure 12. Area Under Curve (AUC) 

 

Overall, these metrics confirm that the Naïve Bayes model is highly reliable for predicting 

maintenance needs, minimizing false positives while leaving room for improvement in reducing false 

negatives through model retraining and adjustment. 

Implementation of Prescriptive Maintenance  

The Naïve Bayes model was integrated into maintenance operations by updating procedures so 

that model outputs directly triggered actions. Figure 13 illustrates the new Standard Operating Procedure 

(SOP) integrating RxM into the maintenance workflow. The process consists of four key steps: 

1. Data Input: Mechanics record breakdowns or anomalies in DAR forms, which are then verified 

by supervisors. 

2. Predictive Output: Data is processed by the Naïve Bayes model, classifying cases as “Yes” or 

“No.” Site Technical Engineers (STE) review the outputs for accuracy. 

3. Maintenance Scheduling: For confirmed “Yes” cases, planners issue preventive maintenance 

work orders, prioritizing the unit in the schedule. 

4. Feedback and Retraining: Monthly reviews evaluate model performance, update datasets, and 

retrain the model when needed. 
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Figure 13. Standard Operating Procedure (SOP) for RxM Implementation 

 

Key Performance Indicator Improvements 

The implementation of RxM has led to substantial improvements in maintenance performance. 

As illustrated in Figures 14 and 15, the rate of BUS decreased significantly from 45% in 2024 to 26% 

in mid-2025, reflecting a shift of failures into planned maintenance events. This reduction directly 

contributed to higher PA, which improved steadily from 89.9% in January 2025 to 95.5% in June 2025, 

surpassing the contractual target of 92%. 

The implementation of RxM has demonstrated tangible benefits, including reduced unplanned 

failures, improved scheduling, and optimized resource allocation. By transforming predictive insights 

into prescriptive actions, PT ABC achieved greater fleet reliability and productivity. 
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Figure 14. Standard Operating Procedure (SOP) for RxM Implementation 

 

Figure 15. Physical Availability 2025 

CONCLUSION  

This study demonstrates that the implementation of RxM using the NB classifier can effectively 

address the research objective of improving the reliability and PA of Komatsu Dump Trucks HD785-7 

under an FMC. By integrating the DMAIC framework with the KDD process, the research confirmed 

that historical failure data could be transformed into actionable insights for preventive maintenance 

scheduling. The predictive model produced highly reliable outcomes with 97.93% accuracy, 100% 

precision, 94.12% recall, and an AUC of 0.995, thereby validating the hypothesis that data-driven 

prescriptive analytics can significantly reduce BUS events and enhance operational performance. 

Furthermore, these results are consistent with previous studies, where Chazhoor et al. (2020) and Fajar 

et al. (2021) demonstrated the robustness of NB in predictive maintenance applications, while Moniri-

Morad and Sattarvand (2023) highlighted the effectiveness of reliability modeling in identifying critical 

subsystems in mining dump trucks. Similarly, Rahimdel et al. (2024) employed a Bayesian network 

approach to strengthen reliability analysis in mining trucks, underscoring the value of probabilistic 

methods in maintenance decision-making. The alignment of this study’s findings with prior research 

validates the proposed RxM framework and confirms its practical contribution to reducing BUS events 

and improving PA in heavy mining equipment fleets. 

Beyond confirming its technical accuracy, the study highlights the strategic implication of RxM 

in shifting maintenance practices from reactive to proactive approaches, ultimately strengthening 

decision-making, optimizing resource allocation, and surpassing contractual PA targets. These 

discoveries indicate that prescriptive analytics can serve as a foundation for digital transformation in 

heavy equipment maintenance. Future research is encouraged to expand the framework by incorporating 

IoT-based telemetry, advanced machine learning algorithms, and cross-site applications to improve 
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robustness and adaptability. Such developments will ensure that RxM continues to evolve as a 

sustainable, scalable solution for the mining industry and other heavy industrial sectors. 
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