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Article history: This study proposes a Prescriptive Maintenance (RxM) framework
. aimed at improving the Physical Availability (PA) of Komatsu Dump
Ezs?ézgdsigpl 25’22002255 Trucks HD785-7 operated under a Full Maintenance Contract (FMC)
’ at PT ABC Site Sangkulirang. The research integrates the DMAIC
Accepted Sep 18, 2025 hodol ith the Knowledge Discovery in Databases (KDD)
Published Oct 30, 2025 methodology with the Snowledg very in D 8D
process to systematically analyze operational failures. Historical
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Keywords: (NB) classifier, selected for its robustness in handling categorical
features common in maintenance records. The model demonstrated
high predictive performance with 97.93% accuracy, 100% precision,
94.12% recall, and an AUC of 0.995, indicating strong reliability in
distinguishing high-risk conditions. The RxM framework was
embedded into daily maintenance planning and Standard Operating
Procedures (SOPs), supported by a monitoring dashboard for
continuous feedback and retraining. As a result, the proportion of
Breakdown Unscheduled (BUS) events decreased from 45% in 2024
to 26% in mid-2025, while fleet PA consistently exceeded the
contractual target of 92%, reaching 95.5%. These findings confirm
that embedding prescriptive analytics into maintenance workflows not
only reduces unplanned downtime but also enhances resource
allocation and decision-making. The case study highlights the
practical value of combining statistical learning with structured
process improvement to drive digital transformation in mining
operations.
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INTRODUCTION

The reliability of heavy equipment plays a crucial role in the mining sector, as downtime directly
affects productivity and operational costs. PT ABC operates a fleet of Komatsu Dump Truck HD785-7
under an FMC, which requires a minimum PA of 92%. However, in 2024, the average PA of the fleet
reached only 90.6%, with a high rate of BUS at 45%.

With advancements in technology, maintenance strategies have evolved significantly. Initially,
the approach was Reactive Maintenance (RM), where equipment was only repaired after failure. Over

time, this evolved into Preventive Maintenance (PM), focusing on scheduled maintenance to prevent
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failures through component replacements or routine maintenance. Subsequently, Condition-Based
Maintenance (CBM) emerged, relying on equipment condition monitoring to detect potential issues
based on specific metrics. Predictive Maintenance (PdM) followed, using sensor data and analytics to
predict failures before they occur, though it was still limited in providing specific action
recommendations. Finally, RxM integrated more complex analytics and diverse data to not only predict
failures but also offer actionable recommendations to prevent these failures, such as scheduling part
replacements or operational adjustments. This approach allows for more targeted decision-making and
enables maintenance teams to act faster and more efficiently in maintaining optimal equipment

performance.

THE EVOLUTION OF MAINTENANCE STRATEGIES
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Figure 1. Evolution of Maintenance Strategies (Source: Limble, 2025)

The evolution of maintenance strategies, as shown in Figure 1, demonstrates the shift from
reactive maintenance to data-driven and more sophisticated analytical strategies. PAM uses analytics to
predict potential failures, RxM goes further by providing more detailed and specific steps to address
detected issues. By integrating larger datasets and advanced analysis techniques, RxM facilitates more
proactive and efficient maintenance decisions, ensuring quicker actions to prevent severe equipment
failures (Limble, 2025; Pillai et al., 2021).

Several previous studies have laid the foundation for the approach used in this research.
Ferdinand (2021) emphasized the importance of prioritizing emergency maintenance needs to prevent
unscheduled failures in heavy equipment operations managed under FMC. Although a considerable
body of research has focused on the application of PdM to anticipate equipment failures, the
comprehensive implementation of RxM frameworks in real-world industrial environments remains
relatively scarce (Choubey et al., 2021). To bridge this gap, recent investigations have advanced the
methodological approaches in heavy mining equipment maintenance. For instance, Moniri-Morad and
Sattarvand (2023) compared various system reliability evaluation methods in mining dump trucks,
highlighting how reliability modeling contributes to identifying critical failure modes and supporting
optimized maintenance planning. Complementing this perspective, Rahimdel et al. (2024) employed a

dynamic Bayesian network approach to analyze the reliability of mining truck subsystems, providing
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empirical evidence that probabilistic models can enhance decision-making in maintenance scheduling
and align with the prescriptive paradigm. Similarly, Giacotto, Marques, and Martinetti (2023) proposed
a holistic and scalable optimization framework for prescriptive maintenance that leverages IoT, asset
health prognostics, and advanced analytics, demonstrating the applicability of RxM in complex and
dynamic industrial settings.

One of the techniques used in RxM is the NB algorithm. This algorithm has proven effective in
classification tasks, especially for categorical data commonly encountered in industrial equipment
maintenance. The strength of NB lies in its ability to handle relatively small datasets with probabilistic
results that are easy to interpret, making it highly useful for maintenance decision-making (Choubey et
al., 2020). Several previous studies have applied NB in predictive contexts to forecast equipment
failures, reporting high classification accuracy rates (Chazhoor et al., 2021; Fajar et al., 2021). This
study adapts NB into the RxM cycle, focusing on maintenance operations under the FMC and linking
failure predictions with appropriate maintenance actions.

Moreover, the concept of RxM has advanced with the integration of sophisticated tools. For
example, Mao et al. (2023) combined RxM with digital twin technology to optimize maintenance
scheduling under resource constraints. This study builds on these insights but focuses on practical
application in heavy mining equipment, using NB to drive the integrated RxM program within
maintenance operations.

In terms of algorithms, NB classification has proven effective for maintenance data analysis.
Chazhoor et al. (2020) compared NB with other techniques for predicting machine failures and found
that NB strikes a strong balance between simplicity and accuracy, particularly for categorical data and
imbalanced datasets. Fajar et al. (2021) applied NB to production machine maintenance logs and
reported that NB's ability to handle categorical features and incomplete data resulted in reliable
predictions in the industrial context. These findings support the choice of NB for classifying
maintenance needs in this study.

RapidMiner is an open-source data science platform that facilitates the entire data analysis
process, from preparation to deployment. With its user-friendly graphical interface, RapidMiner enables
non-technical users to build and execute machine learning workflows, including Naive Bayes for
classification. The RapidMiner Altair Al Studio application provides an intuitive workspace for
designing and managing analytical processes, making it an effective tool for advanced data-driven

solutions.
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Figure 2. RapidMiner Altair Al Studio

To ensure that the implementation of RxM delivers sustainable impact, it is essential to integrate
RxM with a structured improvement framework. One widely used framework is DMAIC, which
provides a systematic approach to analyzing and improving processes. The literature emphasizes the
importance of combining data-driven models with structured improvement frameworks to ensure that
the changes made are not only temporary but can result in long-term improvements (Lumban Raja et
al., 2024).

This study aims to apply RxM, supported by NB classification, to identify patterns in historical
failure data and provide preventative action recommendations. The uniqueness of this research lies in
the integration of RxM into FMC operations through updated SOPs and the creation of a dashboard,

which aims to close the gap between prediction and data-driven decision-making.

METHOD

Research Framework

This research follows the DMAIC (Define-Measure-Analyze-Improve-Control) methodology
integrated with the KDD (Knowledge Discovery in Databases) workflow. The DMAIC phases are used
to define the problem, collect data, analyze results, implement improvements, and control outcomes to
ensure continuous improvement. Meanwhile, the KDD process supports this research by extracting
insights from the existing data through selection, cleaning, and modeling relevant data. The flow

diagrams illustrating the research framework are shown in Figures 3 and 4.
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Figure 3. DMAIC Framework
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This diagram illustrates the DMAIC phases used in this research. The first phase, Define, aims
to define the existing problem, such as low PA of the fleet. Measure involves gathering relevant
operational failure data. Next, in the Analyze phase, the collected data is analyzed to identify failure
patterns. During the Improve phase, prescriptive maintenance solutions are applied to enhance PA, and
the final Control phase ensures that the improvements are maintained, and results are monitored over

time.
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Figure 4. Knowledge Discovery in Databases workflow

This diagram shows the KDD workflow applied in this study to extract insights from the
available data. The first stage, data selection, involves choosing relevant failure data for the research
objective. Next, data cleaning removes invalid or incomplete entries to ensure optimal data quality. Data
modeling is then performed using the NB algorithm to identify patterns related to preventive

maintenance needs and predict anticipated failure times.
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Naive Bayes Classifier
The NB Classifier is based on Bayes' Theorem, which provides a method for calculating the
probability of a hypothesis given the available evidence. The basic formula for Bayes' Theorem is as

follows:

p(H|E).p(H)

P(HIE) = ==

(M

Where:
e P(HIE) is the posterior probability, i.e., the probability of hypothesis H (e.g., class or label)
given evidence E (e.g., data or attributes).
e P(EIH) is the likelihood of evidence E occurring given hypothesis H is true.
e P(H) is the prior probability of hypothesis H, representing our belief in the hypothesis before
considering the evidence.
e P(E) is the marginal probability of evidence E, used to normalize the result.
The core mechanism of NB classification involves several key steps:
1. Calculating prior probabilities for each class label based on historical data.
2. Estimating the likelihood of each attribute value given the class label.
3. Applying Bayes' Theorem to compute the posterior probability for each class.
4. Choosing the class with the highest posterior probability as the prediction for each case.
Although this method assumes feature independence, it has proven effective in many
classification applications, such as text recognition and spam filtering, due to its simplicity and

computational speed.

Data Sources

The dataset employed in this research was derived from Daily Activity Reports (DAR)
documented within PT ABC’s Lakoni system. The reports encompassed failure incidents recorded over
a six-month operational period across 47 units of Komatsu Dump Trucks HD785-7, resulting in 924
valid entries (data records). Each entry was categorized either as “Yes” (Breakdown Unscheduled, BUS,
indicating the need for Preventive Maintenance) or “No” (Breakdown Scheduled, BS, classified as non-
critical). This categorization facilitated a focused analysis of unscheduled failures, which represent a

primary contributor to the observed decline in Physical Availability (PA).
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Table 1. DAR Dataset sample after preprocessing

Machine ID Breakdown Type Problem Attribute Shift Label
DT7044 Tire Low Power Day Yes
DT7052 Electrical System Alternator Fault Night Yes
DT7071 Hydraulics Brake Leak Day Yes
DT7086 Steering Abnormal Noise Day No
DT7090 Electrical System Starter Failure Night Yes

Data Preprocessing

Before the data is used for predictive modeling, preprocessing steps are performed to ensure
optimal data quality. Invalid records and incomplete columns are removed from the dataset. Feature
selection is then performed to choose relevant attributes for modeling, such as Machine ID, Breakdown
Duration, Breakdown Type, Problem Attribute, and Shift. Categorical data is encoded to meet the
requirements of the Naive Bayes algorithm, while numeric variables are kept in their original form. This

step is crucial to minimize noise that could affect the model’s accuracy.

Modeling

The Naive Bayes classification model was applied using RapidMiner Studio 9.6. The dataset
was split into two parts: 75% for training (682 records) and 25% for testing (242 records). This data
split ensures that the model does not overfit and can be tested on unseen data. To handle categories not
found in the training data, Laplace smoothing is applied, ensuring model stability even when
encountering unexpected categories in the test dataset.
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Figure 5. Naive Bayes Data Modeling Process on RapidMiner Studio Platform
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Evaluation Metrics

The performance of the model is evaluated using several standard metrics, including accuracy,
precision, recall, and AUC (Area Under the Curve). Accuracy measures the proportion of correct
predictions compared to the total number of predictions, while precision calculates the proportion of
"Yes" predictions that correctly represent unscheduled failures. Recall indicates how many missed
failures can be captured by the model. AUC is used to measure the model’s ability to distinguish between
both classes (scheduled and unscheduled failures) across various thresholds. Additionally, to ensure that
the model does not overfit and can generalize well, 5-fold cross-validation is performed on the training

data.

RESULTS AND DISCUSSION

Failure Analysis

A historical failure data analysis was conducted to identify dominant failure modes and validate
the focus of the prescriptive model. The breakdown distribution revealed that a few subsystems were
responsible for the majority of Dump Truck failures. As shown in Figure 6, tires were the most failure-
prone component with 92 breakdown occurrences, followed by the electrical system with 68
occurrences. These two categories significantly outnumbered other components, such as the steering
system, which recorded only a few incidents. This finding indicates that tires and electrical systems are
the top priorities for reliability improvement, consistent with field observations where tires degrade
rapidly in mining environments and electrical issues, such as wiring and alternator problems, occur
frequently. Hence, prescriptive maintenance focusing on tire management (e.g., pressure checks and

scheduled replacements) and electrical inspections is expected to deliver significant benefits.

Breakdown Type

TIRE
Count(Breakdown Type): 92

Count(Break dos

Count(Breakdown Type)

Figure 6. Breakdown Type
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Furthermore, a detailed analysis of problem attributes (specific failure symptoms or anomalies)

recorded in the Daily Activity Reports (DAR) was conducted. Although more than 100 failure

descriptions were recorded, several issues recurred frequently. The most common was “Low Power”

(27 instances), typically indicating engine power loss, often related to fuel system or turbocharger

problems. Other recurring problems included “Can’t Start” and “Add Pressure.” Identifying these

patterns enables more targeted actions. For instance, if “Low Power” alerts often precede major engine

failures, prescriptive actions such as cleaning fuel filters or inspecting the turbocharger should be

implemented whenever these symptoms are detected in Figure 7.
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Figure 7. Attribute Problem

In addition, operational patterns also influenced failure risk. As illustrated in Figure 8, more

failures occurred during Day Shifts (242 cases) compared to Night Shifts (93 cases). This may be

attributed to heavier Dump Truck usage during the day or differences in crew activity. These findings

suggest that daytime operations pose higher risks, requiring increased staffing or vigilance from

maintenance crews. Such operational insights complement model predictions and can guide resource

allocation in the field.
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Figure 8. Work Shift

Based on the visual analysis and predictive modeling conducted using RapidMiner, unit
DT7044 recorded the highest number of failures, with a total of 20 events, placing it in the high-risk
category (Figure 9). This finding is consistent with the Naive Bayes model results, which indicated that
DT7044 has a very high likelihood of requiring preventive maintenance. The high frequency of failures
in this unit reflects a decline in reliability and poses a potential threat to operational efficiency if not
addressed promptly. Possible contributing factors include component fatigue, limitations in previous
maintenance effectiveness, or specific operating conditions. Therefore, DT7044 should be prioritized in
the prescriptive maintenance schedule through measures such as advanced inspections, scheduled
component replacements, and shift-based monitoring. These actions will help reduce unscheduled
downtime, control maintenance costs, and sustain equipment availability, while also reinforcing the
implementation of RxM as a data-driven strategy in the field.

Machine Number

L[

Count(Machine Number)

Figure 9. Machine number DT7044 has the highest number of failures
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The Naive Bayes model demonstrated excellent predictive performance on the test dataset (242

cases), achieving an accuracy of 97.93%, with 237 cases correctly classified. As summarized in Figure

9, the classification results were: 80 True Positives (TP), 157 True Negatives (TN), 0 False Positives
(FP), and 5 False Negatives (FN). These results highlight the model’s precision of 100% for the “Yes”

class, recall of 94.12%, and accuracy of 97.93% overall.

@ Table View Plot View

accuracy: 97.93%

pred. No
pred. Yes

class recall

true No true Yes

157

0

5

80

100.00% 94.12%

Figure 10. Naive Bayes model performance results

The Performance Vector results (Figure 11) confirm these findings:

class precision
96.91%

100.00%

e Accuracy: 97.93% — Almost all predictions match the actual results, indicating that the model

has a very high level of accuracy in classification.

e Precision (Yes): 100% — All “Yes” predictions provided by the model actually require

maintenance, indicating that the model does not generate false alarms.

e Recall: 94.12% — Most units requiring maintenance were correctly detected, although there were

some missed failures (false negatives).

e AUC: 0.995 — The model is very effective at distinguishing between cases that require

maintenance (“Yes”) and those that do not (“No”’) with near-perfect accuracy. This high AUC

value indicates that the model has excellent discrimination capabilities shown in Figure 12.
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Figure 11. Performance Vector
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AUC: 0.995 positive class: Yes)

—

Figure 12. Area Under Curve (AUC)

Overall, these metrics confirm that the Naive Bayes model is highly reliable for predicting
maintenance needs, minimizing false positives while leaving room for improvement in reducing false

negatives through model retraining and adjustment.

Implementation of Prescriptive Maintenance
The Naive Bayes model was integrated into maintenance operations by updating procedures so
that model outputs directly triggered actions. Figure 13 illustrates the new Standard Operating Procedure
(SOP) integrating RxM into the maintenance workflow. The process consists of four key steps:
1. Data Input: Mechanics record breakdowns or anomalies in DAR forms, which are then verified
by supervisors.
2. Predictive Output: Data is processed by the Naive Bayes model, classifying cases as “Yes” or
“No.” Site Technical Engineers (STE) review the outputs for accuracy.
3. Maintenance Scheduling: For confirmed “Yes” cases, planners issue preventive maintenance
work orders, prioritizing the unit in the schedule.
4. Feedback and Retraining: Monthly reviews evaluate model performance, update datasets, and

retrain the model when needed.
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Figure 13. Standard Operating Procedure (SOP) for RxM Implementation

Key Performance Indicator Improvements

The implementation of RxM has led to substantial improvements in maintenance performance.
As illustrated in Figures 14 and 15, the rate of BUS decreased significantly from 45% in 2024 to 26%
in mid-2025, reflecting a shift of failures into planned maintenance events. This reduction directly
contributed to higher PA, which improved steadily from 89.9% in January 2025 to 95.5% in June 2025,
surpassing the contractual target of 92%.

The implementation of RxM has demonstrated tangible benefits, including reduced unplanned
failures, improved scheduling, and optimized resource allocation. By transforming predictive insights

into prescriptive actions, PT ABC achieved greater fleet reliability and productivity.
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Figure 14. Standard Operating Procedure (SOP) for RxM Implementation
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Figure 15. Physical Availability 2025

CONCLUSION

This study demonstrates that the implementation of RxM using the NB classifier can effectively
address the research objective of improving the reliability and PA of Komatsu Dump Trucks HD785-7
under an FMC. By integrating the DMAIC framework with the KDD process, the research confirmed
that historical failure data could be transformed into actionable insights for preventive maintenance
scheduling. The predictive model produced highly reliable outcomes with 97.93% accuracy, 100%
precision, 94.12% recall, and an AUC of 0.995, thereby validating the hypothesis that data-driven
prescriptive analytics can significantly reduce BUS events and enhance operational performance.
Furthermore, these results are consistent with previous studies, where Chazhoor et al. (2020) and Fajar
et al. (2021) demonstrated the robustness of NB in predictive maintenance applications, while Moniri-
Morad and Sattarvand (2023) highlighted the effectiveness of reliability modeling in identifying critical
subsystems in mining dump trucks. Similarly, Rahimdel et al. (2024) employed a Bayesian network
approach to strengthen reliability analysis in mining trucks, underscoring the value of probabilistic
methods in maintenance decision-making. The alignment of this study’s findings with prior research
validates the proposed RxM framework and confirms its practical contribution to reducing BUS events
and improving PA in heavy mining equipment fleets.

Beyond confirming its technical accuracy, the study highlights the strategic implication of RxM
in shifting maintenance practices from reactive to proactive approaches, ultimately strengthening
decision-making, optimizing resource allocation, and surpassing contractual PA targets. These
discoveries indicate that prescriptive analytics can serve as a foundation for digital transformation in
heavy equipment maintenance. Future research is encouraged to expand the framework by incorporating
IoT-based telemetry, advanced machine learning algorithms, and cross-site applications to improve
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robustness and adaptability. Such developments will ensure that RxM continues to evolve as a
sustainable, scalable solution for the mining industry and other heavy industrial sectors.
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