ANALYSIS EFFECT OF WALL DIMENSIONS ON THERMAL RESISTANCE IN FURNACE INDUCTION 1200 ⁰C

Ahmad Zohari, Politeknik Gajah Tunggal, Indonesia
Eka Bima Saputra, Politeknik Gajah Tunggal, Indonesia
Rivaldo Rivaldo, Politeknik Gajah Tunggal, Indonesia
Sigit Ariyanto, Politeknik Gajah Tunggal, Indonesia
Andriansyah Andriansyah, Politeknik Gajah Tunggal, Indonesia

Abstract


The development of metal hardening industry using electrical induction to increase the hardening temperature chamber is very quick. The temperature can reach 1200 °C in short time by adjusting the electricity input to heater. However, the temperature can also decrease significantly, if the thermal resistance of room cannot prevent heat transfer to outside. The research method uses analysis of other research and direct measurements on induction furnace machine. The machine specifications have maximum room temperature (T1= 1200 ℃), surrounding temperature (T2= 25.8 °C), and the firebrick thermal conductivity (k= 4.78 J/s m°C). Researchers focused on testing variations dimensions (breadth and thickness) of walls. Based on calculation results, the best thermal resistance is 1.1308 in dimension 2 with breadth of 259 cm2 and thickness of 14 cm. This is in accordance with theory of thermal resistance that the higher thermal resistance produced, the higher ability of material to inhibit rate of heat flow.


Keywords


Metal Hardening; Induction; Thermal resistance; Dimension

Full Text:

21-29 (PDF)

References


Ajiwiguna, T. A., Barkah, A., & Abrar. (2016). Pengaruh Laju Aliran Udara Terhadap Hambatan Termal Heat Sink Untuk Pendingin Elektronik. Jurnal Penelitian Dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, Dan Elektronika (TEKTRIKA), 1(2), 144–147. https://doi.org/https://doi.org/10.25124/tektrika.v1i2.1748

Budi, A. N. S., Qiram, I., & Sartika, D. (2021). Pengaruh Prosentase Kepekatan Kaca Film Terhadap Distribusi Termal dan Pencahayaan Kabin Kendaraan. Jurnal V-Mac, 6(1), 1–4. https://doi.org/https://doi.org/10.36526/v-mac.v6i1.1293

Holman, J. P. (2008). Heat Transfer (J. Llyold, Ed.; 10th ed.). McGraw-Hill.

Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2017). Fundamentals of Heat and Mass Transfer (J. Hayto, Ed.; 8th ed.). John Wiley & Sons.

Pramesti, Y. S., & Akbar, A. (2021). Analisa Heat Transfer Pada Electric Furnace 3 Fasa. Jurnal Mesin Nusantara, 3(2), 102–111. https://doi.org/10.29407/jmn.v3i2.15574

Suprastiyo, H., & Harmi Tjahjanti, P. (2016). Pembuatan Electric Furnace Berbasis Mikrokontroler. Jurnal REM (Rekayasa Energi Manufaktur), 1(2), 1–5. https://doi.org/https://doi.org/10.21070/r.e.m.v1i2.559

Wardhani, V. I. S., & Rahardjo, H. P. (2015). Pengukuran Konduktivitas Termal Bata Incinerator Batan Bandung. Prosiding Seminar Nasional Sains Dan Teknologi Nuklir, 442–446.

Wright, B., Zulli, P., Bierbrauer, F., & Panjkovic, V. (2003). Assessment of Refractory Condition in a Blast Furnace Hearth Using Computational Fluid Dynamics. Third International Conference on CFD in the Minerals and Process Industries, 645–650. https://www.researchgate.net/publication/267936756




DOI: https://doi.org/10.21831/dinamika.v8i1.53747

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Dinamika Vokasional Teknik Mesin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Lisensi Creative Commons 

Jurnal Dinamika Vokasional Teknik Mesin by http://journal.uny.ac.id/index.php/dynamika was distributed under a Creative Commons Attribution 4.0 International License.


 

View My Stats