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 This article aims to give a complete review of previous and current 

research on numerous types of out-of-roundness (OOR) failures in 

train wheels, as well as diagnostic approaches based on machine 

learning and vibration data. The study provides a comprehensive 

overview of the current state of research by categorizing reviews into 

three primary domains: (1) types of OOR failures in train wheels, (2) 

fault diagnosis methodologies, and (3) the use of machine learning and 

vibration data to diagnose train wheel OOR failures. Initially, the 

study investigates the characteristics, causes, and consequences of 

railway wheel OOR failures, including their impact on vibrations. It 

then dives further into diagnostic methods, comparing the 

effectiveness of statistical methods to machine learning-based 

methods for diagnosing failures. Furthermore, the study addresses 

current advances in machine learning and vibration-based diagnostic 

methods to diagnose train wheel OOR failures, providing information 

on their applications and results. This article highlights that by 

utilizing machine learning methods with vibration data offers a 

promising way for accurately diagnosing OOR faults in train wheels 

and predicting their potential failure and remaining useful life, 

resulting to enhanced maintenance efficiency and less downtime. 
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INTRODUCTION  

Train wheel has a vital role in the safe and reliable operation of railways. It is responsible for 

supporting the weight of the train, transmitting traction, ensuring stability and guidance on the tracks. 

One of the most common problems with train wheels is out-of-roundness (OOR), which can result in 

rail damage and sleeper cracking, as well as high-cycle fatigue of wheels and other vehicle components 

(X. Z. Liu, 2019). Currently, railway operators mostly depend on visual inspections that are performed 

by experienced staff to identify train wheel OOR faults. Furthermore, they may find faults based on 

passenger complaints or reports of excessive vibration by drivers. In addition, frequent scheduled re-

profiling of wheels based on engineering methods is conducted, even when no faults are specifically 
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identified. Although these methods may be working in specific situations, but they are essentially 

incapable of providing a quick and accurate fault diagnosis method for train wheel OOR faults. 

Wheel OOR is dangerous because it can cause intense vibration and has the potential to impose 

damage to both track and vehicle components. It may further increase the likelihood of derailment and 

deteriorate ride comfort (X.-Z. Liu, 2019). In 2018, PT Kereta Api Indonesia (Persero), a leading railway 

operator in Indonesia, experienced a derailment, with wheelset OOR being one of the causes (Komite 

Nasional Keselamatan Transportasi Republik Indonesia, 2018). In 2019, Havelländische Eisenbahn AG 

(HVLE), one of the rail operators in Germany, collected the wheelset failure data and found that wheel 

OOR had the highest failure rate compared to another type of  wheelset failure (Chi et al., 2020). Wheel 

OOR anomalies also had been often recorded in China high-speed railway operations over 10 years, 

from 2012 to 2022 (Chi et al., 2020).  

Damage to the surface of the train wheel can be identified by analysing the wheel condition with 

some measurements such as ultrasonic testing (Pau, 2005), infrared camera (Verkhoglyad et al., 2008), 

acoustic emission (Thakkar et al., 2006), magnetic method (Zurek, 2006) and vibration (Li, 2022). 

Wheel OOR defects have a high correlation in impact vibration (Jing et al., 2021). Wheel OOR would 

result in impact loadings on operating railway vehicles and these impact loadings on vehicles may result 

in a series of abnormal vibrations, causing train performance to degrade and perhaps risking train 

operation safety. As speed and capacity of train increase, the impact loadings become higher, and 

railway vehicle impacts vibration problems from wheel OOR become more significant. In addition, the 

vibration-based condition monitoring could be done using wayside monitoring method (Ye et al., 2022). 

It could be done by installing sensors at one or several track sections, to monitor the wheel condition of 

all approaching wheel by analysing the rail vibration (Jelila & Pamuła, 2022)(Guedes et al., 2023). The 

wayside monitoring method will reduce the maintenance cost for train wheel monitoring because the 

number of sensors will be less than the on-board method that need one sensor for each train wheelset 

(Shaikh et al., 2023).  

The manual diagnosis of vibration data which is done by the operator would be time-consuming 

and human-dependent (Ye et al., 2022). Besides that, the fault diagnosis results between one operator to 

each operator might be different. To ensure operational safety and service quality, it is imperative to 

establish fault diagnosis techniques that enable prompt detection of wheel out-of-round (OOR) faults. 

The use of artificial intelligence techniques such as machine learning to diagnose equipment faults has 

tested positive in the manufacturing industry (Lee et al., 2019). It has a high accuracy value in diagnosing 

equipment faults. In addition, the machine learning technique also could predict equipment failures and 

calculate the remaining useful of equipment life (Çinar et al., 2020). Thus, using vibration data and 

machine learning to diagnose wheel OOR faults could improve the efficiency and effectiveness of 

railway operation and maintenance. 
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The purpose of this literature review is to collect, collate and review the important published 

research work in the implementation of machine learning for diagnosing train wheel OOR faults based-

on vibration data. Starting with understanding the characteristics, causes, and consequences of OOR 

problems is critical for providing the safety and efficiency of railway operations. A complete study of 

previous and current studies can provide significant knowledge into the factors that influence OOR 

faults and their impact on train wheel performance. Furthermore, by comparing various fault diagnosis 

methods, including machine learning-based approaches, this review can assist identify the most effective 

techniques for accurately diagnosing and predicting the OOR failures. In addition, this review will be 

highly valuable for railway industry in establishing predictive maintenance strategies to mitigate the risk 

of train wheel OOR failures. The article will be presented in the following order: (1) type of train wheel 

OOR faults, (2) classification of fault diagnosis methods, and (3) machine learning algorithms to 

diagnose equipment faults based on vibration data. 

 

TRAIN WHEEL OUT-OF-ROUNDNESS (OOR) FAULTS 

During rail vehicle operation, the train exhibits two types of wear (Braghin et al., 2009): changes 

in the transversal profile, known as regular wear, and the formation of periodic wear patterns in the 

circumferential direction, known as irregular wear or wheel out-of-roundness (OOR). Regular wear is 

caused by modest fluctuations in contact forces and creepages caused by the wheelset's longitudinal and 

lateral motion on the track. On the other hand, wheel OOR is caused by rapid fluctuations in wheel-rail 

contact conditions, which could be caused by train-track interaction. 

The various types of irregular wear or wheel out-of-round (OOR) faults (J. C. O. Nielsen & 

Johansson, 2000) are compiled in Figure 1. Train wheel wear can cause changes in both the transverse 

and circumferential profiles of the wheel. The transverse profile change is commonly known as regular 

wear, which refers to the deterioration mechanisms that cause a change in the profile across the wheel. 

The circumferential profile change is usually known as irregular wear or out-of-roundness (OOR).  The 

wheel OOR is could be presented as circular irregularity of the wheel circumference or discrete tread 

defects (J. Nielsen, 2009). 

The circular irregularity can be further divided into periodic and stochastic irregularities based 

on the dominant wavelengths present. If there are limited dominant wavelengths, it is considered 

periodic irregularity, and if there are many, it is referred to as stochastic irregularity (Peng, 2020). 

Periodic irregularity can be subdivided into eccentricity, wheel polygonization, and wheel roughness. 

Eccentricity is a 1-order problem in circular irregularity, while wheel polygonization and roughness 

have multiple orders. Wheel polygonization typically has longer wavelengths and higher amplitudes, 

while wheel roughness features shorter wavelengths and smaller amplitudes (Peng, 2020). Discrete tread 

defects include wheel tread flats, wheel tread spalling, and wheel tread shelling. For detailed 

explanation, Figure 2 shows the types of OOR faults in pictures or illustrations and Table 1 explains the 
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differences between each type faults based on its characteristics, causes, and effects (including the 

effects on the vibration generated). 

 

Figure 1. Classification of OOR faults (Peng, 2020) 

 

 

Figure 2. The pictures of OOR faults classification (a) Eccentricity (Kang et al., 2022), (b) Stochastic non-roundness (Jing et 

al., 2022), (c) Wheel polygonization (Peng, 2020), (d) Wheel roughness (Chiello et al., 2019), (e)Wheel tread flat (J. C. O. 

Nielsen et al., 2015), (f)(g) Wheel tread spalling (C. Liu et al., 2022)(Chong et al., 2010), (h)(i) Wheel tread shelling (Chong 

et al., 2010)(Papaelias et al., 2016)
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Table 1. Differences of OOR faults based on characteristics, causes, and effects. 

OOR faults Characteristics Causes Effects 

Eccentricity - Occurs when the wheelset's rotation 

center deviates from its mass center or 

geometric center (Kang et al., 2022) 

- Improper machining, inaccurate assembly, 

poor material quality (Kang et al., 2022) 

- Incorrect wheel fixation during profiling or 

reprofiling (J. C. O. Nielsen & Johansson, 

2000) 

- Produces vertical vibrations with amplitudes that increase as the train speed increases, 

while normal wheel is approximately zero (Lv et al., 2017) 

- At a certain speed, the frequency of eccentricity vibration will approach the natural 

frequency of the vehicle, causing resonance in the car body and increasing the vertical 

vibration significantly (Lv et al., 2017) 

Wheel 

polygonization 
- Circular tread defects with periodic large 

deviation (Sun et al., 2021) 

- Defect properties for wavelength is from 

140 mm to entire circle and amplitude is 

larger than 0.2mm (Peng, 2020) 

- Fixed-frequency mechanisms such as vehicle 

speed, wheelset and local rail flexibility, 

wheelset imbalance, material hardness, self-

induced vibration, and wheel flat(Peng, 2020) 

- Various suspension, material, machining or 

track factors(Fröhling et al., 2019) 

- The root mean square (RMS) value of the vertical acceleration with a polygonal wheel is 

4-8 times higher than a normal wheel (Sun et al., 2021) 

- The vertical load spectrum on the railway vehicle's suspension and structural components 

is increased by polygonized wheel which effect the components break more quickly and 

prematurely (Fröhling et al., 2019) 

- In high-speed, the vehicle's safety potentially be jeopardized (Xiaoyi et al., 2018) 

Wheel 

roughness 

(corrugation) 

- Circular tread defect of periodic small 

deviation (Bracciali & Cascini, 1997) 

- Defect properties for wavelength is from 

30 -80 mm and amplitude is around 10 

µm (Peng, 2020) 

- During tread braking, hot spots arise in some 

regions. When the cooling phase, it will 

generate valleys and corrugation pattern (J. 

Nielsen, 2009) 

- The energy (covariance) of vertical acceleration signals of corrugation wheel is 2-5 times 

higher than normal wheel (Bracciali & Cascini, 1997) 

- The movement of a corrugated wheel along the track generates acoustic waves as a result 

of the vibration caused by the ridges and valleys on the tread (Bracciali & Cascini, 1997) 

- Increasing dynamic load and produce wavy motion in vertical (Srivastava et al., 2016). 

Stochastic 

(non-periodic) 

non-roundness 

- Circular tread defects with non-periodic 

intervals (Peng, 2020) 

- Irregular wear or damage to the wheel tread, 

manufacturing defects, and uneven loading or 

braking forces on the wheel (Jing et al., 2022) 

- Effects two parameters in vertical displacement irregularity which are increasing the 

amplitude of wheel OOR until 200 times compared to periodic non-roundness and creating 

random (non-constant) value for phase angel (Jing et al., 2022) 

- It can cause the train to vibrate and produce excessive noise (Jing et al., 2022) 

- The uneven loading and contact between the non-round wheel and the track can cause 

increased wear and tear on both the wheel and the track (Jing et al., 2022) 

Wheel tread 

flats 

A discrete defect that happens when a 

piece of the wheel tread flattens (J. C. O. 

Nielsen & Johansson, 2000) 

Excessive braking force in comparison to 

available wheel/rail friction [16]. It could be 

because the brakes are incorrectly set, frozen, 

malfunctioning or areas where wheel/rail 

friction is accidentally low (Ye et al., 2020) 

- It causes impact vibration, which produces a spike that is approximately 4 times larger in 

peak-to-peak value than normal vertical acceleration (Ye et al., 2020) 

- The impact vibration can be harmful to both passengers and vehicle-track systems. 

Passengers may experience less comfort as result of the high-frequency vibrations and 

increased noise (Jing et al., 2021) 

Wheel tread 

spalling 
- Localized degradation of wheel tread to 

cracks, leaving behind rough, pitted on 

wheel surface (J. Nielsen, 2009) 

- The crack forms perpendicular and 

parallel to the wheel surface (Srivastava 

et al., 2016) 

- Cracking developed due phase transformation 

stress from the martensite formation of surface 

material (Srivastava et al., 2016) 

- It can be caused by rolling contact fatigue (J. 

Nielsen, 2009), and by wheel/rail relative 

sliding (W. Liu et al., 2015) 

- The RMS and maximum amplitude (peak) value of vertical vibration will increase with the 

severity of the spalling defect. The RMS and peak values are about 2-3 times higher than 

the value of the normal wheel (G. Xu et al., 2021) (Yan et al., 2021) 

- It produces impact vibration that reduces the life of vehicle-track components and has an 

impact on railway safety and passenger comfort (Wang et al., 2013) 

Wheel tread 

shelling 

- Indicated as the loss of relatively large 

(greater than 5 mm) metal from the 

wheel tread [35].  

- Occurs below the plastically worked 

layer (Srivastava et al., 2016) and forms 

sharp angle to the surface (Moyar & 

Stone, 1991) 

- Caused by excessive normal contact and shear 

stress, which leads fatigue cracks (Chong et al., 

2010) 

- Happens as a result of subsurface fatigue due to 

excessive contact stress or the presence of non-

metallic impurities within the rail or wheel 

surface (Srivastava et al., 2016) 

- The RMS value of vertical vibration is about 2-3 times higher than the value of the normal 

wheel and followed by large maximum peak value in high frequency (Papaelias et al., 2016) 

- It may cause irregularities on the rail-wheel surface, increase dynamic load, degrade riding 

quality, increase vibration, and trigger derailments(Srivastava et al., 2016) 
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FAULT DIAGNOSIS METHODS 

In the train wheel out-of-roundness (OOR) fault section , it was explained that all OOR defects 

in the train wheel will result in certain changes in vertical vibration. After the OOR defects are detected 

through vertical vibration, the fault diagnosis is then carried out in order to identify the specific type and 

location of the OOR defect. There are three main methods of fault diagnosis in dynamic system which 

are model based fault diagnosis, knowledge based fault diagnosis and data-driven based fault diagnosis. 

These methods are gathered in Figure 3. 

 

Figure 3. Fault diagnosis methods classification (Escobet et al., 2019) 

Model based Fault Diagnosis 

The model based fault diagnosis compares a measured signal, the actual plant output, and its 

estimation computed in terms of an explicit mathematical model of the system under normal operational 

conditions (Escobet et al., 2019). Figure 4 describes the stages of model-based fault diagnosis. 

 

Figure 4. Block diagram of model based fault diagnosis (Escobet et al., 2019) 
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The difference between measured and estimated output is known as the residual or error; these 

residuals should be zero when the system is operating normally and should vary from zero when a 

malfunction develops. As a result, the faults are discovered by applying a (fixed or variable) threshold 

to the residual. When a fault is identified, the fault signal is compared to a fault signature database to 

appropriately diagnose the fault. Observers, Kalman filters, parity equations, and parameter estimates 

are the four techniques used in model-based fault diagnostics (Escobet et al., 2019). The observer 

technique generates a set of residuals to detect and uniquely identify various faults 

(Venkatasubramanian, Rengaswamy, Kavuri, et al., 2003). Kalman Filter’s prediction error can be 

employed as a fault detection residual; its mean is zero if no faults exist and becomes nonzero if faults 

exist (Escobet et al., 2019). Parity equations are obtained by rearranging or direct manipulation of the 

state space or the input–output model of the system (Escobet et al., 2019). Parameter estimation, which 

involves applying identification methods to identify a linear or nonlinear model of the system 

(Venkatasubramanian, Rengaswamy, Kavuri, et al., 2003). 

Knowledge based Fault Diagnosis 

Knowledge based fault diagnosis is also known as qualitative model-based fault diagnosis 

because the input-output relationships are stated in terms of qualitative functions focusing on different 

units in a system (Venkatasubramanian, Rengaswamy, & Kavuri, 2003). The knowledge based fault 

diagnosis relies on a large volume of historical data available to extract a to extract a knowledge base, 

explicitly representing the dependency of system variables (Fadzail et al., 2022). Figure 5 depicts a 

knowledge-based block diagram for diagnosing the type of fault condition in the system. 

 

Figure 5. Block diagram of knowledge based fault diagnosis (Fadzail et al., 2022) 

According to Figure 5, it begins with historical training and learning data to build the knowledge 

base before moving on to the classifier. Simultaneously, the system model will process the inputs and 

faults to produce the output. Finally, the consistency of the system's input and output will be evaluated 

against the knowledge base to decide the diagnosis. This method employs two main techniques: expert 

systems and causal models (Escobet et al., 2019). Expert systems are knowledge-based procedures that 

are more similar to human problem-solving in style, and they are used to replicate the reasoning of 
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human experts when diagnosing faults (Escobet et al., 2019). Another knowledge-based technique is the 

use of causal models in the modelling of fault-symptom relationships, such as signed direct graph 

(digraphs) and fault tree analysis (FTA) (Escobet et al., 2019). 

Data-driven based Fault Diagnosis 

The data-driven based fault diagnosis uses information gathered by sensors and actuators in a 

dynamic system to extract valuable knowledge. The growth of technology, such as the Internet of Things 

(IoT), has increased the importance of this method. Data obtained may be used to analyse component 

degradation or to develop behavioural models from data, diagnose the faults and estimate its remaining 

useful lifetime (RUL) (P. Nunes, J. Santos, 2023). Figure 6 illustrates the schematic of data-driven based 

fault diagnosis. 

 

Figure 6. Block diagram of data-driven based fault diagnosis (Gonzalez-Jimenez et al., 2021) 

Following Figure 6, the data obtained from sensors and actuators becomes a collection of big 

data that will be extracted into some data features. These features are analysed by using a computational 

model, either statistical model or machine learning (ML) model, to find a hidden pattern that presents 

information about the system condition, including failure diagnosis information. Statistical approaches 

focus on identifying faults based on the distribution of variables during the working process, whereas 

ML is a subfield of artificial intelligent (AI) that provides methodologies for dealing with high-

dimensional data and extracting hidden relationships between data in non-linear and complex systems 

(Carvalho et al., 2019).  

Table 2 compares the advantages and limitations of three fault diagnostic methods: model based, 

knowledge based, and data-driven based. Table 2 shows that data-driven fault diagnosis offers several 

advantages over model- or knowledge-based methodologies. In addition, section of this paper also 

indicating OOR faults in train wheel are highly connected to vertical vibration data. Furthermore, the 

following section of this review will investigate vibration data-driven based fault diagnosis, with a focus 

on machine learning techniques, which are one of the approaches used in the application of data-based 

failure diagnosis. 
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Table 2. Advantages and limitations of fault diagnosis methods 

Fault Diagnosis 

Method 

Advantages Limitations 

Model based  - Highly effective and accurate (Ran et al., 

2019)  

- Models can be reused (Ran et al., 2019) 

- Have some control over the behaviour of 

the residuals (Venkatasubramanian, 

Rengaswamy, Kavuri, et al., 2003) 

- Real-case system is often too stochastic and 

complex to model (Ran et al., 2019)  

- Many mathematics assumptions must be evaluated 

(Ran et al., 2019) 

- Several physical parameters must be determined 

(Ran et al., 2019) 

- The model can be influenced by changes in 

structural dynamics and operational conditions (Ran 

et al., 2019) 

- Noises and disruptions in measurement can lead to 

incorrect fault diagnosis (Escobet et al., 2019) 

- Inability to detect a new fault that has not been 

specifically modelled (Escobet et al., 2019) 

Knowledge based  - Reduce the difficulties on exact numeric 

information (Ran et al., 2019) 

- Able to capture human diagnostic 

associations that are not readily translated 

into mathematical models (Escobet et al., 

2019) 

- Ability to yield partial conclusions from 

incomplete and uncertain knowledge of 

the process (Venkatasubramanian, 

Rengaswamy, & Kavuri, 2003) 

- Time-consuming and costly for large-scale systems 

(Ran et al., 2019) 

- There is not available knowledge from new faults 

(Escobet et al., 2019) 

- Acquire complete knowledge to build a reliable 

knowledge based system (Ran et al., 2019) 

Data-driven based - There is no need to model the system 

(Escobet et al., 2019) 

- Can learn the overall system's behaviour 

with only a few datasets (Escobet et al., 

2019) 

- It is possible to detect new issues or faults 

with insufficient data (Escobet et al., 

2019) 

- The updated and corrected diagnostic can 

provide more reliable information for 

maintenance decision-making in the 

future (Venkatasubramanian, 

Rengaswamy, Yin, et al., 2003) 

- The ML approach can describe very 

complex and non-linear systems with 

great accuracy in defect identification 

(Venkatasubramanian, Rengaswamy, 

Yin, et al., 2003) 

- The ML approach is capable of 

diagnosing, predicting failure, and 

calculating the lifetime of equipment 

(Dalzochio et al., 2020) 

- The statistical technique relies on the assumption 

that parameters have a known distribution, which 

may approximate the true behaviour (Gao et al., 

2015) 

- A large volume of data is necessary (Gonzalez-

Jimenez et al., 2021) 

- Platform for data storage is required (Gonzalez-

Jimenez et al., 2021) 

- High computational resources (Gonzalez-Jimenez 

et al., 2021) 

 

MACHINE LEARNING-VIBRATION BASED OOR FAULT DIAGNOSIS 

The data-driven based fault diagnosis is divided into two types of analytical techniques: 

statistical and machine learning techniques. A statistical method is used by initially building an empirical 

model of the normal behaviour of components, followed by some variable ranking test (such as e.g. data 

variance, Pearson correlation coefficient, relief algorithm, fisher score, class separability, chi-squared or 

χ2, information gain and gain ratio (Zhang et al., 2011)) are used to determine if the data under 

consideration corresponds to equipment condition classification (P. Nunes, J. Santos, 2023). A machine 

learning (ML) method is used to create a normal behaviour model utilizing data from an output 
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monitoring sensor (Krummenacher et al., 2018). To determine maintenance activities, ML approaches 

could model very complex systems with multiclassification of equipment state and compare the 

predicted sensor value with the actual sensor value (P. Nunes, J. Santos, 2023). Table 3 compares the 

advantages and limits of statistical and machine learning methods. 

Table 3. Advantages and limitations of statistical and machine learning methods 

Data-driven Based Fault 

Diagnosis 

Advantages Limitations 

Statistical methods - Easy to understand (noncomplex 

calculation) (Zhang et al., 2011) 

- Lower computational cost (Zhang et al., 

2011) 

- Relies on the assumption that parameters 

have a known distribution, which may 

approximate the true behaviour. 

- Does not consider the non-linearity of the 

data (Guedes et al., 2023) 

- Time invariant, while most of the real 

processes are time-varying 

(Venkatasubramanian, Rengaswamy, 

Yin, et al., 2003) 

Machine learning methods - Possible to detect new issues or faults with 

insufficient data (Escobet et al., 2019) 

- Can describe very complex and non-linear 

systems with great accuracy in defect 

identification (Venkatasubramanian, 

Rengaswamy, Yin, et al., 2003) 

- Capable of diagnosing, predicting failure, 

and calculating the lifetime of equipment 

(Dalzochio et al., 2020) 

- A large volume of training data is 

necessary for some ML methods (Gao et 

al., 2015) 

- High computational resources (Gonzalez-

Jimenez et al., 2021) 

As listed in Table 3, the machine learning method has more benefits than the statistical method. 

In addition, in the era of Industry 4.0, artificial intelligence such as machine learning methods could 

help humans in decision making and make the job more efficient with high accuracy result. So, we will 

study the machine learning approach in better detail. 

Machine Learning Techniques 

Machine learning (ML) approaches are data-driven learning methods that employ historical data 

to train software to make generalized predictions. These models may automatically learn how to solve 

problems of many types and dimensionalities, ranging from hundreds to only a few input features 

(Nacchia et al., 2021). ML is classified into four types in data-driven fault diagnostics (Achouch et al., 

2022), which are supervised learning, unsupervised learning, reinforcement learning, and deep learning. 

The types of supervised and unsupervised learning intended to predict or describe existing relationships 

in a dataset are said to be supervised when the dependent variable is available and unsupervised when 

it is not. Whereas reinforcement learning is a computational approach that learns from the interaction 

with the environment, which means determining how the agents in a system can perform actions in their 

environment to maximize the cumulative rewards. Deep learning (DL) is a type of artificial neural 

network (ANN). It is a broad category of approaches that may be applied to both supervised and 

unsupervised learning. ANN is inspired by brain activity, and its major purpose is to learn from 

unstructured or unlabelled data by employing one or more layers to extract higher-level characteristics 
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from raw input step by step. Deep learning techniques may be used on industrial equipment in a variety 

of contexts, including fault diagnosis, failure prediction, and so on. There are a lot of ML algorithms 

that could be used to several stages of predictive maintenance, such as diagnosis, prognosis, and 

estimation of useful life. Figure 7 shows the taxonomy of machine learning algorithms that gathered 

from some literatures (Achouch et al., 2022)(Sohail et al., 2023)(Tiboni et al., 2022)(Abid et al., 2021). 

The taxonomy highlights the connection among classes of algorithms. 

 

Figure 7. Taxonomy of machine learning algorithms 

Machine Learning-Vibration based OOR Fault Diagnosis 

OOR faults in train wheel, as discussed in section 2, are strongly related to the vertical vibration 

of the wheelset dynamic system. Additionally, vibration data is the most frequently utilized type of data 

in mechanical equipment condition monitoring, including rotating equipment (Tiboni et al., 2022). 

Analysis of vibration data using traditional statistical methods often requires a significant amount of 

time and computational complexity. One solution to this problem is to use machine learning approaches 

for processing vibration data, such as when diagnosing and even predicting the OOR faults. There has 

been some research in recent years on the application of machine learning to analyse vibration data in 

the diagnosis of OOR defects, which is summarized in Table 4. 

Table 4 shows that most of the research was focused on the application of machine learning to 

identify a single type of defect with a vibration based OOR fault. Diagnosing multiple failures is more 

challenging than a single failure, as all OOR failures will influence vertical vibration, so an effective 

ML algorithm is needed to identify the differences in vibration resulting from different OOR failures, 

for resulting an accurate diagnosis fault. According to Table 4, not all researchers utilized vibration data 

that acquired from acceleration measurements; instead, some researchers used data from displacement 

and impact loads measurements to analyse vertical vibration caused by OOR failures. These data were 



  

 

 

 

Jurnal Dinamika Vokasional Teknik Mesin, Volume.09 No.1, April 2024 |   21 

 

acquired from field observations, test-rig experiments, and multibody-dynamic software simulation. In 

addition, the machine learning algorithms used are quite varied even though the SVM and DNN 

algorithms were used in more than one study. Most of the use of ML algorithms was in the failure 

diagnosis stage only, although there was one study for estimating the remaining useful life (RUL). 

Table 4. Summary of ML application for vibration based OOR fault diagnosis. 

OOR Faults Measured signal Source 
ML 

Algorithm 
ML Task Ref. 

General defect Impact load Field SVM and 

SVR 

Fault detection 

and RUL 

estimation 

(Wang et al., 2018) 

Spalling Acceleration Field (depot) kNN-GBDT Fault diagnosis (Kou et al., 2018) 

Flat, shelling, non-

roundness 
- Impact load 

- Wheel profile 

- Field 

- Maintenance 

history data 

SVM, DNN Fault diagnosis (Krummenacher et 

al., 2018) 

General defect Displacement Field BL Fault detection (Ni & Zhang, 2021) 

Polygonization Acceleration Field GMPSO-

MKELM 

Fault diagnosis (Xie et al., 2022) 

Axle crack, wheel 

flat, non-roundness, 

and multi-defects 

- Acceleration - Simulation 

- Test-rig 

Light-GBM  Fault diagnosis (Xiong et al., 2022) 

General defect Impact load Field LAD Fault detection (Osman & Yacout, 

2022) 

Polygonization Acceleration - Simulation 

- Test-rig 

QPSO-SVM Fault diagnosis (M. Xu & Yao, 

2023) 

Flat, spalling Displacement Field NMF, MLP-

AE 

Fault diagnosis (Wan et al., 2023) 

Flat Acceleration Field  DNN Fault diagnosis (Ye et al., 2023) 

 

CONCLUSION 

This paper conducted and addressed extensive evaluations of previous and current research 

work on wheel OOR faults and machine learning-vibration based fault diagnostics. The characteristics, 

factors influencing, and operation effects (including vibration features) caused by wheel OOR faults 

were given and examined in depth. The fault diagnosis methods, namely model-based, knowledge-

based, and data-driven techniques was also described and deliberated. In-depth surveys of machine 

learning approaches for diagnosing equipment failure were also provided. Machine learning-based fault 

diagnosis is more capable, reliable, and accurate than other fault diagnosis methods such as statistical-

based fault diagnosis, perhaps even the best when compared to model- and knowledge-based fault 

diagnosis. ML-based fault diagnosis could be used in complex and nonlinear systems and it is much 

simpler and easier to implement as it does not require system modelling. ML-based fault diagnosis is 

used to analyse data from equipment monitoring results. Whereas, wheel OOR faults have a significant 

relationship to vertical vibration in railway vehicle operation. So, by integrating machine learning 

techniques and vibration data, it is feasible to diagnose OOR faults in train wheel better and more 

accurately. Furthermore, the use of ML and vibration data may predict the failure and remaining useful 

life of the train wheel. Current research for machine learning and vibration-based train wheel OOR 
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failure diagnosis is still not well established, and more research needs to be done. The requirement for 

a large amount of data to create machine learning models is a challenge, because in the actual world, 

fault data from sensor monitoring will almost likely be less than normal condition monitoring data 

(unbalanced data). Furthermore, research into the application of machine learning-vibration techniques 

to identify several train wheel OOR faults is required to determine the optimal machine learning method. 

This type of study can also include railway operator industries, increasing train wheel maintenance 

strategies more effective and efficient. 
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